
Concentration Inequalities for Nonlinear Matroid Intersection∗

Konstantin Makarychev
Microsoft Research

Warren Schudy
IBM Research

Maxim Sviridenko†

University of Warwick

Abstract

In this work we propose new randomized rounding algorithms for matroid intersection and
matroid base polytopes. We prove concentration inequalities for polynomial objective functions
and constraints that has numerous applications and can be used in approximation algorithms
for Minimum Quadratic Spanning Tree, Unrelated Parallel Machines Scheduling and scheduling
with time windows and nonlinear objectives. We also show applications related to Constraint
Satisfaction and dense polynomial optimization.

1 Introduction

Randomized rounding is an algorithmic framework that was first introduced in the seminal work
by Raghavan and Thompson [27]. The idea is simple yet powerful: Define a boolean integer
programming formulation of optimization problem at hand. Then, solve the linear programming
relaxation of that integer programming formulation. Finally, use the values x∗i of the optimal
fractional solution in your randomized rounding procedure; for each i, independently set xi = 1
with probability x∗i and xi = 0 with probability 1−x∗i . The obtained integral solution xi satisfies or
almost satisfies each constraint with high probability by the Chernoff bound. Hence, by the union
bound, all constraints are almost satisfied with high probability as well.

This framework and its variants proved to be useful for many optimization problems arising
in Computer Science, Operations Research and Combinatorial Optimization. However, its per-
formance degrades when the mathematical programming formulation involves many (exponential
number of) constraints or when the constraints have few non-zero entries, and hence the probability
that the integral solution xi does not satisfy a constraint can be too large for the union bound to
give meaningful results. Therefore, over the years researchers developed methods that round the
fractional solution in a dependent fashion such that the final integer solution is guaranteed to be
feasible on the set of constraints that are too sensitive for the Chernoff bound. One class of such
methods developed recently is the randomized rounding procedure designed by Chekuri, Vondrák
and Zenklusen [10, 11] for linear optimization problems where the ”hard” constraints are a part of
matroid base and matroid intersection polytopes. In this work, we generalize the rounding method
of Chekuri, Vondrák and Zenklusen [10, 11] to handle not only linear constraints but also polyno-
mial constraints. We will show in Section 3 various specific problems that can be captured by our
framework.

∗The conference version of this paper appeared at SODA 2012.
†University of Warwick, sviri@dcs.warwick.ac.uk, Work supported by EPSRC grant EP/J021814/1,

EP/D063191/1, FP7 Marie Curie Career Integration Grant and Royal Society Wolfson Research Merit Award.

1

One of the ways to define a large number of constraints that are still algorithmically manageable
is to use the language of Matroid Theory. A matroid M is an ordered pair (V, I), where V is the
(finite) ground set of M, and I is the set of independent sets of M. We recall that the defining
properties for the set I of independent sets of a matroid are as follows: (i) ∅ ∈ I; (ii) X ⊂ Y ∈ I
⇒ X ∈ I; (iii) X,Y ∈ I, |X| > |Y | ⇒ ∃ e ∈ X \ Y such that Y ∪ {e} ∈ I. See books of Oxley [26]
and Schrijver [29] for further information on matroids and associated algorithmics.

For a given matroidM, the associated matroid constraint is: S ∈ I(M). In our usage, we deal
with two matroids Mi = (V, Ii), i = 1, 2, on the common ground set V . We assume that each
matroid is given by an independence oracle, answering whether or not S ∈ Ii. For any set S let
rank(S) be the rank of S, that is the size of a largest independent subset of S. The set function
rank(S) is called the rank function.

For a given matroid M, the associated polymatroid P(M) is a polytope defined by the con-
straints ∑

i∈S
xi ≤ rank(S), ∀S ⊆ V,

xi ≥ 0, ∀i ∈ V.

The base polymatroid has one additional constraint
∑

i∈V xi = rank(V) and will be denoted B(M).
The matroid constraint naturally models various combinatorial constraints, such as cardinality,

acyclicity, degree etc., in one unified framework. Let f(x), gj(x) for j = 1, . . . , k and g′j(x) for
j = 1, . . . , k′ be arbitrary real-valued functions defined for x ∈ [0, 1]n (in this paper we are interested
in degree q multivariate polynomials with coefficients in the interval [0, 1]). In this work we study
two general optimization problems

min f(x), (1)

gj(x) ≥ Cj , j = 1, . . . , k, (2)

g′j(x) ≤ C ′j , j = 1, . . . , k′, (3)

x ∈ B(M), (4)

xi ∈ {0, 1}, ∀i ∈ V. (5)

max f(x), (6)

gj(x) ≥ Cj , j = 1, . . . , k, (7)

g′j(x) ≤ C ′j , j = 1, . . . , k′, (8)

x ∈ P(M1) ∩ P(M2), (9)

xi ∈ {0, 1}, ∀i ∈ V. (10)

Both problems model a variety of computationally difficult optimization problems arising in
various applications such as scheduling, network design, facility location etc. (see Section 3).

In many applications, the optimization problems (1)–(5) and (6)–(10) become more tractable
if one replaces the integrality constraints (5) and (10) with the constraint xi ∈ [0, 1] for all i ∈ V .
More precisely, assume that there exists a polynomial (or super-polynomial in some applications)
algorithm that finds a relaxed fractional solution of the optimization problems (1)–(5) and (6)–(10),
possibly with relaxed right hand side for constraints (2), (3), (7), (8). We apply new dependent
randomized rounding procedures to the fractional relaxed solution of (1)–(5) or the fractional re-
laxed solution of (6)–(10). The formal description of this procedures can be found in Section 2. We
show that for a wide class of problems the integral solution obtained by these methods is concen-
trated around the value of the original fractional solution that implies bounds on the performance
guarantee of the final integral solution for a wide variety of applications (see Theorems 3 and 4 and
Section 3). The key difference between our work and the work of Chekuri, Vondrák and Zenklusen

2

[10, 11] is that their concentration bounds hold only for linear and submodular functions which
limits the potential applications of the method.

In this paper we consider the case when the functions f(x), gj(x) for j = 1, . . . , k and g′j(x) for
j = 1, . . . , k′ are degree q polynomials with coefficients at most 1, i.e. of the form∑

d1,d2,...,dn∈Z+

s.t.
∑
i di≤q

cd1,...,dnx
d1
1 x

d2
2 . . . xdnn

where 0 ≤ cd1,...,dn ≤ 1. For a given fractional solution x∗i for i = 1, . . . , n, let r =
∑

i∈V x
∗
i . The

value r is called the fractional rank of the solution x∗. A small technical observation is that we can
assume that r is lower bounded by the rank R of some optimal solution since we can guess R (n
options) and add the constraint

∑n
i=1 xi ≥ R to our mathematical programming formulation. We

will use the notation χ(S) to denote the characteristic vector of the set S. Our first main result
implies a randomized rounding procedure for a fractional solution for the optimization problems
(1)–(5).

Theorem 1. For any matroidM and corresponding base polymatroid B(M), there exists a polyno-
mial time rounding algorithm that given a vector x∗ ∈ B(M), outputs a random set J , χ(J) ∈ B(M)
with

E [χ(J)] = x∗, (11)

such that for every polynomial f of degree q with coefficients in the range [0, 1] the following in-
equality holds:

Pr [|f(χ(J))− f(x∗)| ≥ λ] ≤ (q + 1)e
− Cλ2

Dqf(x∗)+Dqλ , (12)

where C is an absolute constant (not depending on any other parameters) and D = max(dre, 2)q−1.

Our second main result implies a randomized rounding procedure for a fractional solution for
the optimization problems (6)–(10).

Theorem 2. For any matroids M1, M2 and corresponding polymatroids P(M1), P(M2), there
exists a polynomial time rounding algorithm that given a vector x∗ ∈ P(M1) ∩ P(M2) and integer
parameter p ≥ 2 outputs a random set J ∈ I(M1) ∩ I(M2) with

E [χ(J)] = x̃, (13)

such that for every polynomial f of degree q with coefficients in the range [0, 1] the following in-
equality holds:

Pr [|f(χ(J))− f(x̃)| ≥ λ] ≤ (q + 1)e
− Cλ2

Dpqf(x̃)+Dpqλ , (14)

where x̃ = (1− 1/p)x∗, D = max(dre, 2)q−1, and C is an absolute constant (not depending on any
other parameters).

There are a few key differences between our bounds and the bounds from [10, 11]. The bounds
in [10, 11] are “dimension-free” for linear functions g(x) with nonnegative coefficients, i.e. they
do not depend on |V | or r. While in the case of linear functions g(x) our bounds are similar to
the bounds in [10, 11] we cannot expect this property to hold for polynomials of higher degree as
demonstrated in the example below. Nevertheless, we will see that our bound has many interesting
applications.

3

The following simple example shows that the dependence on rq−1 is necessary. Let x∗1 = 1/2
and x∗i = 1 for i = 2, . . . , n. Consider a degree-q polynomial

g(x) =
∑

S⊆[n]\{1},|S|=q−1

x1

∏
i∈S

xi.

Obviously, g(x∗) =
(
n−1
q−1

)
/2. On the other side any rounding that preserves marginal expectations

of variables has g(χ(J)) = 0 or g(χ(J)) =
(
n−1
q−1

)
, each with probability 1/2. Therefore D must be at

least Ω(
(
n−1
q−1

)
) = Ω(rq−1) (hiding functions of q) to guarantee that for λ <

(
n−1
q−1

)
/2 the probability

bound is at least 1.
The key complication in extending concentration results from linear functions as in [10, 11] to

polynomials is that the influence of each variable, which we approximate with a derivative, is no
longer a constant and worse yet is no longer independent of the other variables. These influences
matter because they affect the step-sizes of the martingale used in the analysis. Each derivative
is a lower-degree polynomial, which we can show to be concentrated by induction. The algorithm
of [10, 11] does not appear to extend to polynomials (at least not with bounds independent of
the dimension n) because of the difficulty of handling the dependence between which variables
are available for rounding at each step of the algorithm and the derivatives with respect to those
variables. For example we cannot afford to take a union bound over the n variables. We work around
this difficulty by using a new and cleaner algorithm: run a certain Markov chain over independent
sets for a fixed period of time. This cleaner algorithm can be analyzed using techniques such as
the self-bounding property of polynomials which allow to apply the method of bounded variances
to the martingale corresponding to our Markov chain.

Due to dependence on rq−1 in the exponent of the probability estimates in Theorems 1 and 2 our
concentration inequalities provide meaningful bounds only if λ2 = Ω(f(x∗)rq−1) and λ = Ω(rq−1).
Since in most applications we are interested λ = εf(x∗) for some small constant ε > 0 we must
have f(x∗) > Crq−1 for some large constant C to obtain nontrivial bounds. While this condition
is restrictive in some settings it still covers many interesting optimization problems. For example,
all applications considered by Arora, Frieze and Kaplan [2] are covered by our framework, they
consider the assignment problem (which is a special case of the matroid intersection problem) with
polynomial objectives satisfying the condition that the optimal value of objective function is Ω(nq).
We will follow [2] and call such polynomial objectives dense. In particular, our results imply the
following theorem.

Theorem 3. There exists a quasi-polynomial time randomized approximation scheme for the ma-
troid intersection problem with the objective function (that could be maximized or minimized) that
is a degree q polynomial and such that the value of the optimal solution is Ω(rq) where r is the
matroid rank of the optimal solution.

An analogous result can be stated for the matroid base polytope. For many specific applications
such as maximum acyclic subgraph problem or minimum linear arrangement problem the algorithms
could be made polynomial using the techniques from [2].

If in addition the polynomials involved in the objective function are convex then we don’t need
to go through the machinery from [2] to obtain a feasible solution of the continuous relaxation. We
just use the polynomial time algorithms for convex programming.

4

Theorem 4. There exists a polynomial time randomized approximation scheme for the maximum
matroid intersection problem with a concave polynomial objective function and minimum matroid
base problem with a convex polynomial objective such that the value of the optimal solutions is
Ω(rq−1/ε) where r is the matroid rank of the optimal solution and ε > 0 is a precision parameter.

Notice that here we have a density condition more general than the one in [2]. Also we can
add an arbitrary number of convex dense constraints which is very useful since many applications
come with multiple objective functions. For example for convex quadratic objective functions we
just need the optimal solution to have value Ω(r/ε).

Nonlinear matroid intersection problems were studied before in the series of papers [5, 20, 6, 7].
In their setting the objective function is a composition of a complicated function of d variables
with d linear functions of n variables defined on the ground set. If d is a constant then polynomial
time algorithms can be derived in many settings. For larger values of d there are polynomial
time approximation algorithms with performance guarantees depending on d and properties of the
function f . While this set of problems is related to our general problems (1)–(5) and (6)–(10) and
some applications are shared, these two settings are quite different. Algorithmically we are relying
on the randomized rounding of the fractional solutions while [5, 20, 6, 7] use more combinatorial
methods.

Another related line of research is the area of probability theory studying concentration of
measure in general and concentration inequalities in particular. There are many beautiful and useful
results in this area, see surveys and books [14, 12, 8, 22]. The most relevant series of concentration
inequalities are due to Boucheron etal. [9], Kim and Vu [16], Vu [37, 38] and Schudy and Sviridenko
[30, 31]. The Kim-Vu [16] concentration inequality and its generalizations and improvements [37,
38, 30, 31] show an upper bound on the probability that a polynomial of independent random
variables deviates significantly from its mean value. The main difference between our inequality
and the ones in [16, 37, 38, 30, 31] is that our polynomial depends on random variables that are
generated by some sophisticated iterative randomized rounding procedure, actually we expect all
our random variables to be dependent from each other while the polynomial in [16, 37, 38, 30, 31]
consists of independent random variables.

2 Rounding algorithms

2.1 Preliminaries

We now present a new matroid intersection rounding algorithm inspired by the algorithm due to
Chekuri, Vondrák and Zenklusen [11]. Every fractional solution x∗ ∈ P(M1) ∩ P(M2) can be
represented as a convex combination of n integral solutions x(i) ∈ P(M1) ∩ P(M2), i.e. x∗ =∑n

i=1 λix
(i) (see Theorem 41.13 in [29]) by a polynomial time algorithm (actually n can be replaced

by the number of non-zero components in vector x∗). We assume without loss of generality that
r = ‖x∗‖1 is an integer greater than 1 since we can always increase r by adding dummy elements,
i.e. the elements independent with all other elements in matroid, and this will not change the
inequalities 12 and 14. Moreover, by adding dummy elements to the matroids M1 and M2 and
truncating them at r i.e. adding the cardinality constraint with upper bound r, we can assume that
each x(i) is a characteristic vector of a base in matroids M1 and M2, and thus ‖x(i)‖1 = r.

The algorithm of Chekuri, Vondrák and Zenklusen [11] finds a convex decomposition of a given
vector x∗: x∗ =

∑n
i=1 λix

(i). Then it merges vectors x(i) using swap rounding (see Lemma 20). The

5

merge is performed in many rounds. The details of the algorithm are quite complex. We simplify
this approach: we show how to randomly merge an arbitrary feasible solution J ∈ I(M1)∩I(M2)
with a fractional feasible solution x∗. Then, we argue that by performing this merge many times
we obtain a set J satisfying properties of Theorem 2.

Lemma 5. For every common independent set J ∈ I(M1)∩I(M2), vector x∗ ∈ P(M1)∩P(M2),
parameter p ∈ {2, . . . , r}, and x̃ = (1 − 1/p)x∗ there exists a distribution of sets π(J) ∈ I(M1) ∩
I(M2), such that

• for every u ∈ J , Pr [u /∈ π(J)] = (1− x̃u)/r;

• for every u /∈ J , Pr [u ∈ π(J)] = x̃u/r;

• |J 4 π(J)| ≤ 2p.

Moreover, the distribution over sets π(J) can be computed in polynomial-time (i.e. there is a
polynomial number of sets with non-zero probabilities and a polynomial time algorithm to compute
such non-zero probabilities).

The first two point in Lemma 5 imply E [χ(π(J))] = 1
r x̃+ (1− 1

r)χ(J). Intuitively, this lemma
shows that given a common independent set J and a vector x∗ in the intersection of two polyma-
troids, we can “reshuffle” our common independent set J and obtain a new common independent
set such that the number of changed elements is at most 2p and we have precise bounds on prob-
abilities of adding and removing elements to J . The parameter p represents the tradeoff between
the size of the “shuffle” and precision, i.e. closeness of x̃ to x∗.

We prove this lemma (relying on the swap procedure of Chekuri, Vondrák and Zenklusen [11]) in
Section A. Our lemma could be seen as a reformulation of the Chekuri, Vondrák and Zenklusen [11])
result in the language convenient for our purposes.

2.2 Algorithm

We first give an algorithm for rounding a vector in the matroid intersection polytope (Theo-
rem 2). We describe discrete and continuous time stochastic processes that change a random
set J(t) ∈ I(M1) ∩ I(M2) over time t ∈ T = [t0, 1]. The reason to present both continuous and
discrete processes together is that readers from different communities could find one or another
more intuitive. At time t0, we let J(t0) = J0 where J0 is a random set satisfying E [χ(J0)] = x̃
and J0 ∈ I(M1)∩I(M2). We obtain J0 by first finding a convex decomposition x∗ =

∑
λiχ(I(i)),

I(i) ∈ I(M1)∩I(M2); picking a random I(i) with probability λi; removing every element from I(i)

with probability 1/p; and letting J0 to be the resulting set. (In fact, we could set J(t0) in almost
arbitrary way e.g., J(t0) = ∅). Then, at some random moments t ∈ T , we add and remove some
elements from J(t). In the end, the algorithm outputs the set J(1). We then show how to simulate
the process in polynomial-time.

We let t0 = 1/(4qr). We pick a sufficiently large integer number N and let ∆t = (1 − t0)/N ;
TN = {t0 +k∆t : 0 ≤ k ≤ N}. Note, that N may be super exponential. In fact, later we let N →∞
and ∆t → 0. Throughout the paper we write o(1), o(∆t), O(∆t) etc. assuming that ∆t → 0 and
all other parameters are fixed. If ‖XN −YN‖∞ ≤ aN = o(1) (i.e., limN→∞ aN = 0), where XN , YN
are random variables, and aN is a sequence of numbers, we write X = Y + o(1).

6

We describe the stochastic process in two different ways: first, as a limit of discrete time Markov
stochastic processes, each of which is generated by an algorithm, and then as a continuous time
Markov process.

Discrete Time Stochastic Process. Fix a sufficiently large N . Set JN (t0) = J0. At
every moment t ∈ TN , with probability r∆t/t, the algorithm replaces the set JN (t) with the set
JN (t+∆t) = π(JN (t)), where π(JN (t)) is the set from Lemma 5; and with probability (1−r∆t/t),
it keeps the set JN (t) unchanged i.e., sets JN (t + ∆t) = JN (t). Here, we assume that N is
sufficiently large and, hence, r∆t/t ∈ [0, 1]. In other words, the algorithm generates a Markov
process with transition probability (for J ′ 6= J),

Pr
[
JN (t+ ∆t) = J ′ | JN (t) = J

]
= Λ(t) p(J, J ′) ∆t, (15)

where Λ(t) = r/t and p(J, J ′) = Pr [π(J) = J ′] is the probability of picking the set J ′ defined in
the proof of Lemma 5. Note, that since the set T contains N elements, the running time of the
algorithm described above is not polynomial or even exponential. We give an efficient algorithm
later.

We always assume that N is sufficiently large. As N → ∞, the processes JN (t) tend to a
continuous time Markov process1 J(t). We formally define the continuous time Markov process
J(t) below.

Continuous Time Stochastic Process. The stochastic process J(t) is a non-homogeneous
continuous time Markov process with finitely many states defined on the time interval T = [t0, 1].
The states of the process are sets J ∈ I(M1)∩I(M2). We denote the state at time t ∈ T by J(t).
At time t0, J(t0) = J0. The generator of the process is Λ(t)p(J, J ′), where as before Λ(t) = r/t and
p(J, J ′) is the probability of picking the set J ′ in Lemma 5. In other words, the process is defined
using equation (for J ′ 6= J),

Pr
[
J(t+ ∆t) = J ′ | J(t) = J

]
= Λ(t) p(J, J ′) ∆t+ o(∆t), (15′)

when ∆t→ 0. The desired set J returned by the algorithm is the set J(1).

Connection with the Poisson Process. The stochastic process J(t) can be described in a
natural way using a non-homogeneous Poisson process2 P (t) with rate Λ(t) defined on [t0, 1]. At
moment t0, P (t0) = 0. Whenever the Poisson process P (t) jumps, the process J(t) goes from one
state J to another state π(J). Note that the transitions J 7→ π(J) do not depend on t. Thus,

J(t) = πP (t)(J0).

The same is true for processes JN (t):

JN (t) = πB
N (t)(J0),

1The limit is taken in the Skorohod topology. However, we only need that JN (1)→ J(1) in distribution.
2We remind the reader the definition of the Poisson process with rate Λ(t). The Poisson process is a process with

independent increments. For every t1 ≤ t2, the random variable P (t2) − P (t1) is distributed as a Poisson random
variable with parameter

∫ t2
t1
Λ(t)dt. Each realization of the process is a monotone right-continuous (càdlàg) step

function taking values in N. We say that the process jumps at a point t, if P (t) = limt′↑t P (t′) + 1 i.e., the trajectory
P (t) has a jump discontinuity at t. Note, that for every t, (P (t) − limt′↑t P (t′)) ∈ {0, 1}. The probability that the
process jumps in the interval [t, t+ ∆t] is Λ(t)∆t+ o(∆t).

7

here BN is the number of jumps of the process JN (t) in the interval [t0, t]. As N →∞, BN (t)→
P (t) (in distribution), hence, for every t, the limiting distribution of JN (t) equals the distribution
of J(t).

Algorithm. To prove Theorem 2 we need to show that, first, the process can be simulated in
polynomial-time and, second, that the set J(1) satisfies the properties (13) and (14).

The algorithm for computing J(1) first computes the number of jumps of the Poisson process,
P (1), and then applies P (1) times, the algorithm from Lemma 5.

Algorithm 1 (expected polynomial-time rounding algorithm)

1. Compute P = P (1).

2. Let J = J0.

3. Repeat P times:

• J = π(J), where π(J) is the distribution returned by the algorithm from Lemma 5.

4. Output J .

The number of jumps in the interval [t0, 1], i.e., P (1), is distributed according to the Poisson
distribution with the parameter

Λ̃ =

∫ 1

t0

Λ(t)dt =

∫ 1

t0

rdt

t
= r log(1/t0).

That is, for every k ∈ N, Pr [P (1) = k] = e−Λ̃Λ̃k/(k!). Since E [P (1)] = Λ̃ = r log(1/t0), the
algorithm running time is polynomial in expectation.

To make the algorithm truly polynomial-time, we need to slightly modify it: either by allowing
an exponentially small probability of a failure or by replacing P with a random variable P ′ which
is distributed as P conditioned on {P ≤ 2eΛ̃}. Namely, instead of P , we define P̃ as

Pr
[
P̃ = k

]
= Pr(P (1) = k | P (1) ≤ 2eΛ̃),

and let J = πP̃ (J0). Thus, the number of loop iterations is always bounded by 2eΛ̃. Observe, that

Pr
[
P (1) ≥ 2eΛ̃

]
=
∑
k≥2eΛ̃

e−Λ̃Λ̃k

k!
≤
∑
k≥2eΛ̃

e−Λ̃
(e
k

)k
Λ̃k ≤ 2−Λ̃ = 2−r log(1/t0).

Hence, if we condition on P (1) ≤ 2eΛ̃, the probability of every event changes by a factor at most
(1− 2−r), particularly inequality (14) still holds possibly with a slightly different C. We also need

8

to verify that E [χ(J)] = x̃. Observe, that E
[
πk(J0)

]
= x̃ for every fixed natural k. This is shown

by induction (using Lemma 5):

Pr
[
u ∈ πk+1(J0)

]
= Pr

[
u ∈ πk(J0)

]
·
(
1− 1− x̃u

r

)
+ Pr

[
u /∈ πk(J0)

]
· x̃u
r

= x̃u ·
(
1− 1− x̃u

r

)
+ (1− x̃u) · x̃u

r
= x̃u.

Then,

E [χ(J)] =

∞∑
k=0

E
[
πk(J0)

]
Pr
[
P̃ = k

]
=

∞∑
k=0

x̃Pr
[
P̃ = k

]
= x̃.

Lemma 6. The running time of our randomized rounding algorithm is O(r log r) times the running
time of the algorithm from Lemma 5 generating the probability distribution over independent sets.

Analysis. By Lemma 22, for every t ∈ T , J(t) ∈ I(M1)∩I(M2). Hence, J(1) ∈ I(M1)∩I(M2).
Define

xN (t) = t χ(JN (t)) + (1− t) x̃;

x(t) = t χ(J(t)) + (1− t) x̃;

here, as in Lemma 22, x̃ = (1 − 1/p)x∗. We prove that xN (t) is almost a martingale: for every
t ∈ TN ,

E
[
xNu (t+ ∆t) | JN (t)

]
= xNu (t) +O(∆t2),

and x(t) is a martingale.

Lemma 7. At every step t ∈ TN ,

• for every u ∈ JN (t), Pr
[
u /∈ JN (t+ ∆t) | JN (t)

]
= (1− x̃u)∆t/t;

• for every u /∈ JN (t), Pr
[
u ∈ JN (t+ ∆t) | JN (t)

]
= x̃u∆t/t.

• for every u ∈ V , E
[
xNu (t+ ∆t) | JN (t)

]
= xNu (t) +O((∆t)2) (uniformly as ∆t→ 0).

• for every u ∈ V , t2 > t1, E [xu(t2) | J(t1)] = xu(t1).

Proof. The probability, that at step t an element u ∈ JN (t) is removed from JN (t) equals the
probability that the algorithm chooses to change JN (t), which is r∆t/t, times the probability that
u /∈ π(JN (t)), which is (1− x̃u)/r by Lemma 5. Thus, for u ∈ JN (t),

Pr
[
u /∈ JN (t+ ∆t) | JN (t)

]
=

(1− x̃u)∆t

t
.

Similarly, for every u /∈ JN (t) we have

Pr
[
u ∈ JN (t) | JN (t)

]
=
r∆t

t
· x̃u
r

=
x̃u∆t

t
.

9

Hence, if u ∈ JN (t), then

E
[
xNu (t+ ∆t)− xNu (t) | JN (t)

]
= E

[
(t+ ∆t)χu(JN (t+ ∆t))− tχu(JN (t)) | JN (t)

]
−∆t x̃u

= Pr
[
u ∈ JN (t+ ∆t) | JN (t)

]
×∆t

−Pr
[
u /∈ JN (t+ ∆t) | JN (t)

]
× t− x̃u ∆t

= (1−O(∆t))×∆t− (1− x̃u)∆t

t
× t− x̃u ∆t

= O((∆t)2).

If u /∈ JN (t), then

E
[
xNu (t+ ∆t)− xNu (t) | JN (t)

]
=
x̃u∆t

t
× (t+ ∆t)− x̃u∆t = O((∆t)2).

The last item follows from item 3: subdivide the interval [t1, t2] into N ′ → ∞ subinter-
vals. The expected change of xu(t) from one endpoint of each subinterval to another is at most
O((∆t)2) = O((1/N ′)2). The number of intervals is N ′. Thus, E [xu(t2)− xu(t1) | J(t1)] =
limN ′→∞O((1/N ′)2)N ′ = 0.

Note, that E [x(t0)] = t0E [χ(J(t0))] + (1 − t0)x̃ = x̃. Thus, by Lemma 7, because x(t) is a
martingale,

E [χ(J(1))] = E [x(1)] = E [x(t0)] = x̃.

We now estimate the value of f(χ(J(1))) = f(x(1)). To do so, we analyze the behavior of the
process f(xN (t)) as N → ∞. Observe, that ‖xN (t0)− x̃‖1 = ‖χ(J0)− x̃‖1t0 < 2rt0 (always), and
by Lemma 12 (which we prove later),

|f0 − f(x̃)| ≡ |f(xN (t0))− f(x̃)| ≤ 8t0r r
q−1 = 8t0r

q = 4rq−1 ≤ 4D. (16)

Here, we denote f0 = f(t0χ(J0) + (1− t0)x̃). Recall that D = max(dre, 2)q−1. That is, f(xN (t0)) is
always very close to f(x̃). Thus, we want to show that f(xN (t)) does not change much over time.
We fix N and express each ∆f(t) ≡ f(xN (t+ ∆t))− f(xN (t)) as the sum of the linear term, which
we denote by ∆Y (t), and the non-linear term, which we denote by ∆Z(t):

∆f(t) ≡ f(xN (t+ ∆t))− f(xN (t)) (17)

=
(∑
u∈V

∂f(xN (t))

∂xu
(xNu (t+ ∆t)− xNu (t))

)
︸ ︷︷ ︸

∆Y (t)

+
(
f(xN (t+ ∆t))− f(xN (t))−

∑
u∈V

∂f(xN (t))

∂xu
(xN (t+ ∆t)− xN (t))

)
︸ ︷︷ ︸

∆Z(t)

.

For t ∈ TN , denote Y N (t) =
∑

t′∈TN :t′<t ∆Y (t′); ZN (t) =
∑

t′∈TN :t′<t ∆Z(t′). Then,

f(xN (t)) = f0 + Y N (t) + ZN (t). (18)

Recall that p ≥ 2 is an integer tradeoff parameter from Theorem 2. We first prove a concentra-
tion inequality for ZN (t). Namely, we prove the following lemma.

10

Lemma 8. The following inequality holds, for every λ ≥ 128p, D ≥ rq−1 and r ≥ 2,

Pr

[
max
t∈TN

|ZN (t)| ≥ λD
]
≤ e−

λ
171p + o(1),

as N →∞.

We present the proof in Section 2.4. To simplify the proof we make no attempt to optimize
constants. Then, in Section 2.5, we prove a bound on Y N (t).

Lemma 9. The following inequality holds, for every λ ≥ 128p, D ≥ rq−1, and r ≥ 2

Pr

[
max
t∈TN

|Y N (t)| ≥ λD | f0

]
≤ 2qe

− λ2

30pq(D−1f0+3λ) + (q − 1)e
− λ

171p + o(1),

as N →∞. Here f0 ≡ f(x(t0)).

As a corollary of Lemma 8, Lemma 9 and equation (18) we get the following claim.

Claim 10. For every λ ≥ 128p, D ≥ rq−1 and r ≥ 2

Pr

[
max
t∈TN

|f(xN (t))− f0| ≥ 2λD | f0

]
≤ 2qe

− λ2

30pq(D−1f0+3λ) + qe
− λ

171p + o(1),

as N →∞. Here f0 ≡ f(x(t0)).

Note, that in the proof of Lemma 9 we assume by induction that Claim 10 holds for all q′ < q
(the base is q′ = 0). For the sake of analysis, we also assume that if f(xN (t′)) − f0 ≥ 2λD for
some t′, then we stop the process i.e., for every t ≥ t′, we let xN (t) = xN (t′). This modification
of the process does not change the probability Pr

[
maxt∈TN |f(xN (t))− f0| ≥ 2λD | f0

]
, since if

f(xN (t′))− f0 ≥ 2λD, then always maxt∈TN |f(xN (t))− f0| ≥ 2λD. Thus, we may assume that if
the algorithm changes xN (t), then f(xN (t))− f0 < 2λD.

We now show that Claim 10 implies Theorem 2. Let λ = λ′/(4D). First, assume that λ′ ≥
512pD (then the condition λ > 128p of Claim 10 is satisfied). By (16), |f0 − f(x̃)| ≤ 4D < λ′/2
and, hence, f0 < f(x̃) + λ′/2. Write,

Pr
[
|f(xN (1))− f(x̃)| ≥ λ′ | f0

]
≤ Pr

[
|f(xN (1))− f0| ≥ λ′/2 | f0

]
= Pr

[
|f(xN (1))− f0| ≥ 2λD | f0

]
≤ 2qe

− λ′2/(16D2)

30pq(D−1f0+3λ′/(4D)) + qe
−λ
′/(4D)
171p + o(1)

≤ 2qe
− λ′2/(16D2)

30pq(D−1(f(x̃)+λ′/2)+3λ′/(4D)) + qe
−λ
′/(4D)
171p + o(1)

≤ 2qe
− C1λ

′2

Dpq(f(x̃)+λ′) + qe
−C2λ

′
Dp + o(1).

for some sufficiently small absolute constants C1, C2. If λ′ ≤ 512pD, then the right hand side is
greater than 1 (for C1 < 1/16; since C1λ

′2/(Dpq(f(x̃) + λ′)) ≤ C1λ
′/(Dp) ≤ 1/2 and e1/2 < 2),

and the inequality obviously holds. Since this inequality holds for every f0, we have

Pr
[
|f(xN (1))− f(x̃)| ≥ λ′

]
≤ 2qe

− C1λ
′2

Dpq(f(x̃)+λ′) + qe
−C2λ

′
Dp + o(1).

11

In the limit as N →∞, we get

Pr
[
|f(x(1))− f(x̃)| ≥ λ′

]
≤ 2qe

− C1λ
′2

Dpq(f(x̃)+λ′) + qe
−C2λ

′
Dp .

We now slightly simplify the right hand side. The second term can be upper bounded by qe
− C2λ

′2

Dpq(f(x̃)+λ′) .
Hence,

Pr
[
|f(x(1))− f(x̃)| ≥ λ′

]
≤ 3qe

− C3λ
′2

Dpq(f(x̃)+λ′) ,

where C3 = min(C1, C2). Observe, that for every ε,

min(3qe−ε, 1) ≤
√

3qe−ε ≤ (q + 1)e−ε/2.

Therefore,

Pr
[
|f(x(1))− f(x̃)| ≥ λ′

]
≤ (q + 1)e

− C3λ
′2

2Dpq(f(x̃)+λ′) .

This concludes the proof of Theorem 2.

2.3 Self-Bounding Properties of Polynomials

We prove several easy bounds on degree-q polynomials. These properties of polynomials will be
used later to apply the method of bounded variances and corresponding concentration inequalities
(McDiarmid [22]).

Lemma 11. For every q ∈ N and every degree-q polynomial f(x) with non-negative coefficients
that are at most 1, x ∈ [0, 1]n, ‖x‖1 ≤ r, and r ≥ 2 the following inequalities hold

1. f(x) ≤ rq+1−1
r−1 ≤ 2rq;

2. ∂f(x)
∂xi
≤ 2 (rq−1)

r−1 ≤ 4rq−1;

3. ∂2f(x)
∂xi∂xj

≤ 8rq−2 for i 6= j.

4. ∂2f(x)
∂x2i

≤ 16rq−2.

Proof. We first verify that for q = 0 all inequalities above hold. If q = 0, then f(x) is a constant,

f(x) ≤ 1. Thus, (1) f(x) ≤ 1; (2) ∂f(x)
∂xi

= 0; (3) ∂2f(x)
∂xi∂xj

= 0; (4) ∂2f(x)
∂x2i

= 0. We now consider the

case q > 0.

1. If f contains only monomials of degree q, then

f(x) ≤
(n∑
k=1

xk

)q
= ‖x‖q1 ≤ r

q.

Now, for arbitrary f , we have

f(x) ≤
q∑

k=0

rk =
rq+1 − 1

r − 1
≤ 2rq.

12

2. Write, f(x) = xig(x)+h(x), where h does not depend on xi. Then, assuming that the inequality
holds for q′ < q, we get

∂f(x)

∂xi
= xi

∂g(x)

∂xi
+ g(x) ≤ ∂g(x)

∂xi
+ 2rq−1 ≤ 2

(rq−1 − 1)

r − 1
+ 2rq−1 = 2

(rq − 1)

r − 1
≤ 4rq−1.

3. Write f(x) = xixjg(x) + h(x), where h does not have monomials multiple xixj . Assuming that
we proved the inequality for all q′ < q, we get

∂2f(x)

∂xi∂xj
= g(x) + xi

∂g(x)

∂xi
+ xj

∂g(x)

∂xj
+ xixj

∂2g(x)

∂xi∂xj

≤ 2rq−2 + 4rq−3 + 4rq−3 +
∂2g(x)

∂xi∂xj
≤ 2rq−2 + 2rq−2 + 2rq−2 + 2rq−2 ≤ 8rq−2.

4. Write f(x) = x2
i g(x) + h(x), where h does not have monomials multiple x2

i . Assuming that we
proved the inequality for all q′ < q, we get

∂2f(x)

∂x2
i

= 2g(x) + 4xi
∂g(x)

∂xi
+ x2

i

∂2g(x)

∂x2
i

≤ 4rq−2 + 16rq−3 + 16rq−4 ≤ 4rq−2 + 8rq−2 + 4rq−2 ≤ 16rq−2.

Lemma 12. For any degree-q polynomial f(x) with non-negative coefficients that are at most 1,∣∣∣f(y)− f(x)−
n∑
i=1

(yi − xi)
∂f(x)

∂xi

∣∣∣ ≤ 8‖x− y‖21rq−2,

and ∣∣∣f(y)− f(x)
∣∣∣ ≤ 4‖x− y‖1rq−1

for all x, y ∈ [0, 1]n such that ‖x‖1 ≤ r, ‖y‖1 ≤ r and r ≥ 2.

Proof. Let y = x+ δ for some δ ∈ [−1, 1]n. Then using the Taylor expansion of g(t) = f(x+ t · δ)
for t ∈ [0, 1] with the Lagrange form for the remainder term we obtain g(1) = g(0)+g′(0)+g′′(ξ)/2
for some ξ ∈ [0, 1]. Therefore,∣∣∣∣∣f(y)− f(x)−

n∑
i=1

(yi − xi)
∂f(x)

∂xi

∣∣∣∣∣ =
1

2

∣∣∣∣∣∣
n∑
i=1

n∑
j=1

δiδj
∂2f(x+ ξ · δ)

∂xi∂xj

∣∣∣∣∣∣
≤ 1

2

(n∑
i=1

n∑
j=1

|δiδj |
)
× max
z=x+ξ·δ

i,j

∣∣∣∣ ∂2f(z)

∂xi∂xj

∣∣∣∣
=

1

2

(n∑
i=1

|δi|
)2
× max
z=x+ξ·δ

i,j

∣∣∣∣ ∂2f(z)

∂xi∂xj

∣∣∣∣
≤ 1

2

(n∑
i=1

|δi|
)2
× max
z∈[0,1]n;‖z‖1≤r

i,j

∣∣∣∣ ∂2f(z)

∂xi∂xj

∣∣∣∣
≤ 1

2
‖x− y‖21 × 16 rq−2 ≤ 8‖x− y‖21 rq−2.

13

We have used that ‖z‖1 = ‖(1 − ξ) · x + ξ · y‖1 ≤ r, since the norm is a convex function. We also
used Lemma 11 (items 3 and 4).

Similarly, g(1) = g(0) + g′(ξ) for some ξ ∈ [0, 1]. Thus,

|f(y)− f(x)| ≤
(n∑
i=1

|δi|
)
× max
z∈[0,1]n;‖z‖1≤r

i,j

∣∣∣∣∂f(z)

∂xi

∣∣∣∣ ≤ 4‖x− y‖1rq−1.

Lemma 13. For any degree-q polynomial f(x) with non-negative coefficients and vector x,∑
u

∂f(x)

∂xu
xu ≤ qf(x).

Proof. It is sufficient to prove the inequality for every term g(x) = a
∏
u(xu)du of polynomial f(x)

where
∑

u du ≤ q, ∑
u

xu
∂g(x)

∂xu
=
∑
u

dug(x) ≤ qg(x).

2.4 Proof of Lemma 8

We use the following concentration inequality. This inequality is a reformulation of Theorem 3.15
(page 224), McDiarmid [22]. For details see Section B.

Theorem 14. Let
x(t) =

∑
t′∈T :t′<t

∆x(t)

(where t ∈ T) be a stochastic process adapted to the filtration F(t) (t ∈ T) (i.e., loosely speaking,
x(t) depends only on F(t)). Suppose that E [∆x(t) | F(t)] ≤ ∆µ(t) and ∆x(t) ≤ b a.s. for a
nonrandom sequence ∆µ(t) ≥ 0 and a (nonrandom) constant b ≥ 0. Then for any λ ≥ 0 and v ≥ 0,

Pr

[
max
t∈T

(x(t))−
∑
t∈T

∆µ(t) ≥ λ and V ≤ v

]
≤ e−

λ2

2v(1+(bλ/(3v))) ,

where the random variable V (the predictable quadratic variation of x(t)) is the sum of conditional
variances

V =
∑
t∈T

Var [∆x(t) | F(t)] =
∑
t∈T

E
[
(∆x(t)−E [∆x(t) | F(t)])2 | F(t)

]
.

Lemma 8. The following inequality holds, for every λ ≥ 128p, D ≥ rq−1 and r ≥ 2,

Pr

[
max
t∈TN

|ZN (t)| ≥ λD
]
≤ e−

λ
171p + o(1),

as N →∞.

14

Proof. Recall, that we defined ∆Z(t) in equation (17) and ZN (t) in equation (18). By Lemma 12,

|∆Z(t)| ≤ 8rq−2 ‖xN (t+ ∆t)− xN (t)‖21 ≤
8D

r
‖xN (t+ ∆t)− xN (t)‖21.

Denote ∆H(t) = ‖xN (t+ ∆t)− xN (t)‖1, HN (t) =
∑

t′∈TN :t′<t ∆H(t). At every step the algorithm

changes at most 2p elements of JN (t) i.e., |JN (t+ ∆t)4 JN (t)| ≤ 2p, thus

∆H(t) = ‖(t+ ∆t)χ(JN (t+ ∆t))− tχ(JN (t))−∆tx̃‖1
= t ‖χ(JN (t+ ∆t))− χ(JN (t))‖1 +O(∆t)

≤ 2pt+O(∆t).

and

|ZN (t)| ≤ 8D

r

∑
t′<t

(∆H(t))2 ≤ 8D

r
max
t′<t

∆H(t′)
∑
t′′<t

∆H(t′′) ≤ 16Dpt

r
HN (t) +O(∆t). (19)

Then,

E
[
∆H(t) | JN (t)

]
≤ E

[
‖(t+ ∆t)χ(JN (t+ ∆t))− tχ(JN (t))‖1 | JN (t)

]
+ ∆t‖x̃‖1

≤ E
[
‖χ(JN (t+ ∆t))− χ(JN (t))‖1t+ ‖χ(JN (t+ ∆t))‖1∆t | JN (t)

]
+ ∆t‖x̃‖1

=
∑

u∈JN (t)

Pr
[
u /∈ JN (t+ ∆t) | JN (t)

]
t+

+
∑

u/∈JN (t)

Pr
[
u ∈ JN (t+ ∆t) | JN (t)

]
t

+ E
[
|JN (t+ ∆t)| | JN (t)

]
∆t+ ‖x̃‖1∆t.

Note, that |JN (t + ∆t)| ≤ r (because JN (t + ∆t) is an independent set, and r is the rank of M1

and M2), and |x̃| < |x∗| = r. Also, by Lemma 7,∑
u∈JN (t)

Pr
[
u /∈ JN (t+ ∆t) | JN (t)

]
t+

∑
u/∈JN (t)

Pr
[
u ∈ JN (t+ ∆t) | JN (t)

]
t

=

 ∑
u∈JN (t)

1− x̃u
t

t∆t

 +

 ∑
u/∈JN (t)

x̃u
t
t∆t

≤ |JN (t)|∆t+ ‖x̃‖1∆t ≤ 2r∆t.

Denote ∆µ(t) = 4r∆t. Then, E
[
∆H(t) | JN (t)

]
≤ ∆µ(t) and

∑
t∈TN ∆µ(t) ≤ 4r. Now, we

bound the predictable quadratic variation of HN (t),

V ≡
∑
t∈TN

Var
[
∆H(t) | JN (t)

]
≤
∑
t∈TN

E
[
(∆H(t))2 | JN (t)

]
≤ (2p+ o(1))

∑
t∈TN

E
[
∆H(t) | JN (t)

]
≤ 8pr + o(1).

15

Applying the concentration inequality from Theorem 14 (with v = 8pr+o(1) > V and b = 2p+o(1)),
we get

Pr

[
max
t∈TN

(H(t))− 4r ≥ λ′
]
≤ e−

(λ′)2
16pr+4pλ′/3 + o(1),

if λ′ ≥ 4r, then

Pr

[
max
t∈TN

(HN (t)) ≥ 2λ′
]
≤ Pr

[
max
t∈TN

(HN (t))− 4r ≥ λ′
]
≤ e−

(λ′)2
4pλ′+4pλ′/3 + o(1) = e

− λ′
16/3 p + o(1).

Therefore, for every positive λ′ ≥ 4r (using (19)),

Pr

[
max
t∈TN

|ZN (t)| ≥ 32λ′Dp

r

]
= Pr

[
max
t∈TN

|ZN (t)| ≥ 16Dp

r
× 2λ′

]
≤ e−

λ′
16/3 p + o(1);

and for λ = 32pλ′/r (i.e., every λ ≥ 128p),

Pr

[
max
t∈TN

|ZN (t)| ≥ λD
]
< e
− 3λr

512p2 + o(1) < e
− λ

171p + o(1).

2.5 Proof of Lemma 9

Lemma 9. The following inequality holds, for every λ ≥ 128p, D ≥ rq−1, and r ≥ 2

Pr

[
max
t∈TN

|Y N (t)| ≥ λD | f0

]
≤ 2qe

− λ2

30pq(D−1f0+3λ) + (q − 1)e
− λ

171p + o(1),

as N →∞. Here f0 ≡ f(x(t0)).

Proof. By Lemma 7, E
[
xNu (t+ ∆t)− xNu (t) | JN (t)

]
= O((∆t)2) (for all u ∈ V), thus

E
[
∆Y (t) | JN (t)

]
= E

[∑
u∈V

∂f(xN (t))

∂xu
(xNu (t+ ∆t)− xNu (t)) | JN (t)

]
= O((∆t)2).

and E
[
Y N (t)

]
= o(1). Note, that ‖xN (t+∆t)−xNu (t)‖1 ≤ 2pt+O(∆t) and ∂f(xN (t))

∂xu
≤ 4rq−1 ≤ 4D

(by Lemma 11). Hence, |∆Y (t)| ≤ 8pD + o(1).
We now estimate the sum of conditional variances of the process Y N (t).

V =
∑
t∈TN

Var
[
∆Y (t) | JN (t)

]
≤
∑
t∈TN

(
E
[
(∆Y (t))2 | JN (t)

])
.

Then,

E
[
(∆Y (t))2 | JN (t)

]
= E

[(∑
u∈JN (t)

∂f(x(t))

∂xu
t× (1− χu(J(t+ ∆t)))+

∑
u/∈JN (t)

∂f(x(t))

∂xu
t× χu(J(t+ ∆t)) +O(∆t)

)2
| JN (t)

]
.

16

The process JN (t) makes at most one jump in the interval [t, t+∆t], so |JN (t)4JN (t+∆t)| ≤ 2p,
and the number of non-zero summands in the expression above is at most 2p. Thus (by Cauchy–
Schwarz),

E
[
(∆Y (t))2 | JN (t)

]
≤ 2pE

[∑
u∈JN (t)

(∂f(x(t))

∂xu
t× (1− χu(J(t+ ∆t)))

)2
+

∑
u/∈V (t)

(∂f(x(t))

∂xu
t× χu(J(t+ ∆t))

)2
| JN (t)

]
+ o(∆t).

Using Lemma 7, we find

E
[
(∆Y (t))2 | JN (t)

]
≤ 2p

(∑
u∈JN (t)

(∂f(x(t))

∂xu
t
)2
× (1− x̃u)∆t

t

+
∑

u/∈JN (t)

(∂f(x(t))

∂xu
t
)2
× x̃u∆t

t

)
+ o(∆t)

≤ 2p
(∑
u∈JN (t)

(∂f(x(t))

∂xu

)2
t∆t+

∑
u/∈JN (t)

(∂f(x(t))

∂xu

)2
x̃ut∆t

)
+ o(∆t).

Now, we bound
(∂f(x(t))

∂xu

)
≤ 4rq−1 ≤ 4D (by Lemma 11) and in the first sum, we replace t with

xu(t) ≥ tχu(JN (t)) = t (for u ∈ JN (t)) (note: all derivatives of f are nonnegative since f has
nonnegative coefficients),

E
[
(∆Y (t))2 | JN (t)

]
≤ 8pD

∑
u∈V

∂f(x(t))

∂xu
xu(t)∆t+ 8tpD

∑
u∈V

∂f(x(t))

∂xu
x̃u∆t+ o(∆t).

We bound the first term using self bounding properties of polynomials (Lemma 13):

8pD
∑
u∈V

∂f(x(t))

∂xu
xu(t)∆t ≤ 8pDqf(xu(t))∆t ≤ 8pDq(f0 + 2λD)∆t.

Here we used the fact that we stop the process if f(xu(t)) ≥ f(x(t0)) + 2λD. We bound the second

term by the inductive hypothesis (see Claim 10) applied to the polynomial g(x) = 1
q

∑
u∈V

∂f(x(t))
∂xu

x̃u
(whose degree is (q − 1) and whose coefficients are in the range [0, 1]). Let E be the event

E =

{
max
t∈TN

(1

q

∑
u∈V

∂f(x(t))

∂xu
x̃u

)
≤ 1

q

∑
u∈V

∂f(x(t0))

∂xu
x̃u + 2λD

}
,

then,

Pr [E | g0] ≥ 1− (q − 1)

(
2e
− λ2

30p(q−1)(D−1g0+3λ) + e
− λ

171p

)
,

where g0 = g(x(t0)). We estimate g0. Using that xu(t0) = (1 − t0)x̃u + t0χu(J(t0)) ≥ (1 − t0)x̃u
and t0 = 1/(4qr), we get x̃u ≤ 4qr/(4qr − 1) xu(t0) ≤ q/(q − 1) xu(t0). Then,

g0 =
1

q

∑
u∈V

∂f(x(t0))

∂xu
x̃u ≤

q

q − 1

(
1

q

∑
u∈V

∂f(x(t0))

∂xu
xu(t0)

)
≤ qf(t0)

q − 1
=

qf0

q − 1
.

17

The last inequality follows from Lemma 13. Thus,

Pr [E | f0] ≥ 1− (q − 1)

(
2e
− λ2

30pq(D−1f0+3λ) + e
− λ

171p

)
.

Assume, that E holds, then

8tpD∆t
(∑
u∈V

∂f(x(t))

∂xu
x̃u

)
≤ 8tpD∆t

(∑
u∈V

∂f(x(t0))

∂xu
x̃u + 2λqD

)
.

Since x̃u ≤ 4qr/(4qr − 1) xu(t0) ≤ 8/7xu(t0),

8tpD∆t
(∑
u∈V

∂f(x(t))

∂xu
x̃u

)
≤ 8tpD∆t

(8

7

∑
u∈V

∂f(x(t0))

∂xu
xu(t0) + 2λqD

)
≤ 10tpD∆t

(
qf0 + 2λqD

)
.

In the last inequality, we again used the self bounding properties of polynomials (Lemma 13).

We thus get that the following upper bound on the sum of conditional variances (assuming E
holds),

V ≤ 10tpDq(f0 + 2λD)

∫ 1

t0

(1 + t)dt+ o(1) < 15pqD(f0 + 2λD).

Applying the concentration inequality from Theorem 14 (with v = 15pqD(f0 + 2λD), b =
15pD + o(1), ∆µ(t) = O((∆t)2)), we get (note Y (t0) = 0)

Pr

[
max
t∈T
|Y N (t)| ≥ λD and V ≤ v | f0

]
≤ 2e

− λ2D2

30pqD(f0+2λD)+16pD2λ/3 + o(1)

= 2e
− λ2

30pq(D−1f0+2λ)+16pλ/3 + o(1)

≤ 2e
− λ2

30pq(D−1f0+3λ) + o(1).

Finally,

Pr

[
max
t∈T
|Y N (t)| ≥ λD | f0

]
≤ Pr

[
max
t∈T
|Y N (t)| ≥ λD and V ≤ v | f0

]
+ Pr [V ≥ v | f0]

≤ 2qe
− λ2

30pq(D−1f0+3λ) + (q − 1)e
− λ

171p + o(1).

2.6 Base Polytope Rounding

We now discuss Theorem 1. We use the same algorithm as before. We only need to make a minor
change. We replace Lemma 5 with the following lemma.

Lemma 15 (Analog of Lemma 5). For every set J ∈ B(M), vector x∗ ∈ B(M) there exists a
probabilistic distribution of sets π(J), χ(π(J)) ∈ B(M), such that

18

• for every u ∈ J , Pr [u /∈ π(J)] = (1− xu)/r;

• for every u /∈ J , Pr [u ∈ π(J)] = xu/r;

• |J 4 π(J)| ≤ 2.

Moreover, the distribution over sets π(J) can be computed in polynomial-time.

In the algorithm, we use π as the transition function for the set J . The lemma follows from the
standard basis exchange property (compare with Lemma 22): for every two bases I, J ∈ B(M),
the exists a matching {(ai, bi)} between J \ I and I \ J such that for every i,

χ((J \ ai) ∪ {bi}) ∈ B(M).

3 Applications

For every potential application that can be formulated as the mathematical programming problems
(1)–(5) or (6)–(10), we need to show two things. First, we must show that we can find a good
fractional solution within a reasonable time. A very powerful tool to solve this problem is convex
and linear programming, i.e. we must show how to reduce one non-linear (and possibly non-convex)
constraint to a set of more tractable convex constraints and guarantee decent approximation of the
original set of constraints. Second, we need to demonstrate that the concentration bounds from
Theorems 1 and 2 imply meaningful bounds in terms of the parameters of that specific application.

3.1 Quadratic Minimum Spanning Tree

Our first application is a generalization of the classical Minimum Spanning Tree Problem. In
the classical problem we are given an undirected weighted graph G = (V,E) the goal is to find
a spanning tree T of minimum weight. In the Quadratic Minimum Spanning Tree Problem we
are given nonnegative weights ce ≥ 0 for each edge and weights we,e′ for each pair of edges. We
assume without loss of generality that we,e = 0. The goal is to find a spanning tree T in graph G
that minimizes the objective function

∑
e∈T ce +

∑
e,e′∈T we,e′ . This problem has applications in

transportation, telecommunication, irrigation and energy distribution and received some attention
in Operations Research literature [3, 15, 25, 39]. In many applications one needs to balance between
various objectives which are usually modeled as constraints in the mathematical programming
formulation such spanning tree problems also received a lot of attention in OR literature [17, 23, 35].
We consider the Multi-Objective Quadratic Spanning tree problem.

Let cej ∈ [0, 1] and we,e′,j ∈ [0, 1] be the coefficients in the j-th objective for j = 0, . . . , k. Let
M be the graphic matroid of graph G, i.e. forests in graph G are the independent sets in M and
spanning trees in G are bases inM. Consider the following continuous mathematical programming
relaxation of the problem

min
∑
e∈E

ce0x
2
e +

∑
e,e′∈E

we,e′,0xexe′ ,∑
e∈E

cejx
2
e +

∑
e,e′∈E

we,e′,jxexe′ ≤ Cj , j = 1, . . . , k,

x ∈ B(M),

0 ≤ xe ≤ 1, ∀e ∈ E.

19

Let Aj be the |E| × |E| matrix with diagonal elements Aj(e, e) = cej and off-diagonal elements

Aje,e′ = we,e′,j/2. Then we can re-write the above mathematical programming problem as

min
∑
e∈E

xᵀA0x, (20)

xᵀAjx ≤ Cj , j = 1, . . . , k, (21)

x ∈ B(M), (22)

0 ≤ xe ≤ 1, ∀e ∈ E. (23)

The objective function and constraints of this mathematical programming problem are convex if
all matrices Aj are positive semidefinite. One possible way to define positive semidefinite matrices
is to associate a set of labels Sej with each edge e ∈ E and define we,e′,j = |Sej ∩Se′j |/Λ where Λ =
maxe |Se|. This is a measure of how different the label sets for edges e and e′ are. Then the matrix
Aj is positive semidefinite if cje ≥ |Sej |/Λ. In this case we can solve our continuous mathematical
programming relaxation with arbitrary precision by known methods in convex programming. Note
that if all sets have the same cardinality, then for any integral solution x the value of xᵀAjx lies in
the interval [Θ(n),Θ(n2)] (depending on the structure of label sets).

Let x∗ be an optimal fractional solution of the relaxation (20)–(23). Applying the randomized
rounding from the proof of Theorem 1 we obtain an integral solution x̃ such that the probability
that we have an error larger than εCj for objective function gj(x

∗) = x∗ᵀAjx∗ is e−ε
2Cj/Θ(n) since∑

e∈E x
∗
e = r = n − 1. Therefore, if the right hand side Cj � n then with high probability our

integral solution violates the right hand side by a factor of at most 1 + ε. Analogously, the error
term for the objective function g0(x) is negligible with high probability if εg0(x∗)� n.

3.2 Unrelated Parallel Machine Scheduling

We consider the problem of scheduling unrelated parallel machines with multiple objectives. An
instance of the problem consists of a set J = {J1, . . . , Jn} of n jobs and a set M = {M1 . . . ,Mm}
of m machines. The job Jj has a processing time pij if it is assigned to be processed on machine
Mi. We assume that pij ∈ [0, 1] or pij = +∞ (which means that this job cannot be processed on
machine Mi). There are costs cij ∈ [0, 1] associated with processing job Jj on machine Mi. Each
job must be processed without interruption for the respective amount of time on one of the m
machines. Every machine can process at most one job at a time. The goal is to assign each job to a
machine and find an ordering of the jobs assigned to each machine to optimize suitable objectives.

The unrelated parallel machine scheduling is one of the classical scheduling models arising
in various applications with various and sometimes multiple objective functions (see for example
[21, 4, 36]). Here we just choose two objectives to illustrate our method. The first objective is
the total squared load of each machine. Formally, let Li be the total sum of processing times
of jobs assigned to the machine Mi. Then we would like to minimize

∑m
i=1 L

2
i (see [4, 36] for

additional motivation, references and algorithms on unrelated parallel machines with this objective).
Intuitively, this objective tries to balance the load on different machines.

On the other side, our jobs can belong to different customers, i.e. J = ∪qs=1rs and we would like
to be fair to all customers and balance the cost of processing jobs for all the customers. Note that
this objective is different from bounding the total cost of processing jobs as in [32]. If Cs is the total
cost of jobs in group Rs then our second objective function is to minimize

∑q
s=1C

2
s . Actually, this

objective function is substantially more difficult than the sum of squared machine loads since each

20

term Cs includes variables from different jobs and machines. This complication basically breaks
the type of analysis from [36, 10] that was based on negative correlation of variables with the same
machine (or job) indices.

We formulate the problem as follows

min g1(x) =

m∑
i=1

 n∑
j=1

pijxij

2

, (24)

g2(x) =

q∑
s=1

∑
j∈Rs

m∑
i=1

cijxij

2

≤ L, (25)

∑
Mi∈M

xij = 1, Jj ∈ J , (26)

xij ∈ {0, 1}, Jj ∈ J ,Mi ∈M. (27)

The constraints (26) are matroid base constraints in the partition matroid on the ground set
consisting of pairs (Mi, Jj) for Mi ∈ M and Jj ∈ J . Moreover, both the objective function
(24) and the constraint (25) are convex. Therefore, we can solve the continuous relaxation of
this problem in polynomial time with arbitrary precision. Let x∗ be an optimal solution of such
relaxation.

Theorem 1 implies that the error in the objective function (24) and the constraint (25) is at
most εgτ (x∗) for τ = 1, 2 with high probability if gτ (x∗) � n. This is a reasonable assumption
since the value of the quadratic polynomial in (24) could be as high as n2 and the value of the
quadratic polynomial in (25) could be as high as n2 depending on the instance.

Obviously we can easily extend our result for any constant (or relatively slowly growing) number
of objective functions. We could have many different partitions of jobs into customer groups such as
zipcodes, income levels, political preferences etc., for each such partition we could define the fairness
objective function like (25). We can obviously add any polynomial number of linear constraints,
like cardinality constraints for each machine or upper bounds for machine loads. The total weighted
completion time objective can be also added to our framework by using the method developed by
Skutella [34] and Sethuraman and Squillante [28] to approximate such an objective with a convex
function.

3.3 Scheduling with Time Windows

Scheduling and Vehicle Routing with Time Windows is a large area of Operations Research. It
studies the problems when each job (client) comes with a set of time windows where it can be
executed (served); see surveys [24, 33] for further applications and references. We consider one
specific problem in this area.

An instance of the problem consists of a set J = {J1, . . . , Jn} of n jobs and a set M =
{M1 . . . ,Mm} of m machines. Each job has a unit processing time. For each job Jj , machine Mi

and time t we define cijt = 1 if this job can be processed on Mi at time t and cijt = 0, otherwise.
We define a matroid M with elements J . Each set of jobs that can be simultaneously be assigned
to a feasible machine-time slot is independent. To check that M is indeed a matroid we just need
to notice that this is exactly the definition of a transversal matroid [29]. For each pair (i, t), let Ait
be the set of jobs that can be processed on machine Mi at time t. Then any independent set inM

21

is exactly a partial transversal of the set system {Ait}. In addition, jobs are partitioned into sets
X1, . . . , Xq where all jobs from the same set are incompatible and cannot be scheduled together.
This constraint can be modeled as a standard partition matroid constraint.

The usual objective function is linear, we would like to maximize the total weight of processed
jobs. In addition, we associate a cost cj ∈ [0, 1] with processing of every job and ask to balance the
cost distribution between various groups of jobs as in (25), i.e. J = ∪qs=1rs and we consider the
constraint

q∑
s=1

 ∑
j∈Rs∩S

cj

2

≤ L (28)

where S is the set of chosen jobs. One can easily define a continuous convex relaxation as in
the previous section. The bounds of the Theorem 2 imply that one can find an integral solution
of value close to the value of the fractional optimal solution with high probability. The fairness
constraint (28) is violated by the amount εL with probability e−ε

2L/Θ(r) which is negligible if
L� r = rank(M).

3.4 Constraint Satisfaction

In this section we will show implications of our concentration theorems for constraints arising from
the classical constraint satisfaction problems. For illustration purposes consider the constraint
corresponding to the maximum cut problem in undirected graphs with edge weights wij ∈ [0, 1/2],
i.e.

g(x) =
∑

(i,j)∈E

wij(xi + xj − 2xixj) ≥W. (29)

That is we consider a problem of general type (1)–(5) or (6)–(10) when some of the constraints
have above form. Consider the linearization of the constraint (29)∑

(i,j)∈E

wijzij ≥W, (30)

zij ≤ xi + xj , (31)

zij ≤ 2− xi − xj (32)

0 ≤ zij ≤ 1 (i, j) ∈ E. (33)

We solve the continuous relaxation of the problem (1)–(5) or (6)–(10) with linearized constraints.
Let x∗ be the optimal fractional solution and

L(x∗) =
∑

(i,j)∈E

wij max{x∗i + x∗j , 2− x∗i − x∗j}.

It is known [1] that g(x) ≥ L(x)/2 for any x ∈ [0, 1]n. Therefore, g(x∗) ≥ W/2. Since the
polynomial g(x) has positive and negative coefficients we apply our concentration theorems for
the linear function

∑
(i,j)∈E wij(xi + xj) and polynomial

∑
(i,j)∈E 2wijxixj separately. Note, that∑

(i,j)∈E wij(x
∗
i + x∗j) = Θ(r) and polynomial

∑
(i,j)∈E 2wijx

∗
ix
∗
j = Θ(r2). We obtain that for a

rounded solution g(x̃) ≥ (1− ε)W/2 with high probability 1− e−ε2W 2/Θ(r3) if W � r3/2. Note that
this is not very restrictive since a random cut contains half of the graph edges.

22

More generally, instead of maximum cut constraint (29) we could have any maximum constraint
satisfaction type of problem (e.g. Max k-SAT or Not-All-Equal-k-SAT) as long as we have two
conditions. First, there is a reasonable (preferably constant) gap between original (like (29)) and
linearized (like (30–33)) constraints. Second, the right hand side W is much larger than square
root of the denominator of the fraction in Theorems 1 or 2.

3.5 Dense Polynomials

Consider the following optimization problem

max f(x), (34)

gj(x) ≥ Cj , j = 1, . . . , k, (35)

x ∈ P(M1) ∩ P(M2), (36)

xi ∈ {0, 1}, ∀i ∈ V, (37)

where f(x) and gj(x) are degree-q polynomials for all j = 1, . . . , k with absolute value of coefficients
upper bounded by one. Let r̃ = min{rank(M1), rank(M2)}. Arora, Frieze and Kaplan [2] proved
(implicitly) the following theorem.

Theorem 16 ([2]). Given the optimization problem (34)–(37), it is possible to define
O(nO(q4k logn/ε2)) linear programs such that for at least one linear program every feasible solution
of (34)–(37) is a feasible solution of that linear program. Moreover, for every optimal fractional
solution x∗ of that linear program and every optimal integral solution x̄ of (34)–(37) we have
f(x∗) = f(x̄)± εr̃q and gj(x

∗) = gj(x̄)± εr̃q for j = 1, . . . , k.

Theorem 16 implies that in time O(nO(q4k logn/ε2)) one can find a reasonable approximate so-
lution x∗ to the continuous relaxation of the problem (34–37). Combining Theorem 2 and our
rounding algorithm applied to the fractional solution x∗, we obtain an integral solution x̃ such that

with high probability maxj{|f(x̃) − f(x∗)|, |gj(x̃) − gj(x∗)|} = O
(√

rq−1rq
)

= O
(
rq−1/2

)
where

r =
∑

i∈V x
∗
i ≤ r̃, i.e. for large enough r̃ the error term due to the randomized rounding procedure

is negligible in comparison with εrq (the error term due to Theorem 16).

References

[1] A. Ageev and M. Sviridenko, Pipage rounding: a new method of constructing algorithms with
proven performance guarantee. Journal of Combinatorial Optimimization 8 (2004), no. 3, 307–
328.

[2] S. Arora, A. Frieze and H. Kaplan, A new rounding procedure for the assignment problem with
applications to dense graph arrangement problems, Mathematical Programming, 92(1), 2002,
1–36.

[3] A. Assad and W. Xu, The quadratic minimum spanning tree problem, Naval Research Logistics
v39. (1992), 399-417.

[4] Y. Azar and A. Epstein, Convex programming for scheduling unrelated parallel machines, In
Proceedings of STOC 2005, pp. 331–337.

23

[5] Y. Berstein, J. Lee, S. Onn and R. Weismantel, Parametric nonlinear discrete optimization over
well-described sets and matroid intersections, Math. Program. 124(1-2) (2010), pp. 233–253.

[6] Y. Berstein, J. Lee, H. Maruri-Aguilar, S. Onn, E. Riccomagno, R. Weismantel and H. Wynn,
Nonlinear Matroid Optimization and Experimental Design, SIAM Journal on Discrete Mathe-
matics 22(3) (2008), pp. 901–919.

[7] Y. Berstein and S. Onn, Nonlinear bipartite matching, Discrete Optimization 5(1) (2008), pp.
53–65.

[8] S.Boucheron, G. Lugosi and P.Massart, CONCENTRATION INEQUALITIES. Oxford Univer-
sity Press. March 2013.

[9] S. Boucheron, O. Bousquet, G. Lugosi and P. Massart, Moment inequalities for functions of
independent random variables. The Annals of Probability, 33(2) (2005), 514-560.

[10] C. Chekuri, J. Vondrák, R. Zenklusen, Dependent randomized rounding via exchange proper-
ties of combinatorial structures, FOCS 2010, pp.575–584.

[11] C. Chekuri, J. Vondrák, R. Zenklusen, Multi-budgeted matchings and matroid intersection via
dependent rounding, SODA 2011, pp. 1080–1097.

[12] F. Chung and L. Lu, Concentration inequalities and martingale inequalities: a survey, Internet
Math. 3 (2006), no. 1, 79-127.

[13] R. Cordone and G. Passeri, Heuristic and exact approaches to the Quadratic Minimum Span-
ning Tree Problem, CTW 2008: 52-55.

[14] D. Dubhashi and A. Panconesi, Concentration of measure for the analysis of randomized
algorithms, Cambridge University Press, Cambridge, 2009.

[15] J. Gao and Lu, M., Fuzzy quadratic minimum spanning tree problem, Applied Mathematics
and Computation v.164 (2005), pp. 773–788.

[16] J. Kim and V. Vu, Concentration of multivariate polynomials and its applications, Combina-
torica 20 (2000), no. 3, 417-434.

[17] R. Kumar, P. Singh and P. Chakrabarti, Improved quality of solutions for multiobjective
spanning tree problem using distributed evolutionary algorithm, High Performance Computing
- HiPC 2004 Lecture Notes in Computer Science, 2005, Volume 3296/2005, 97-112.

[18] J. Lee, V. Mirrokni, V. Nagarajan, M. Sviridenko. Maximizing non-monotone submodular
functions under matroid and knapsack constraints, SIAM Journal on Discrete Mathematics
23(4): 2053–2078 (2010).

[19] J. Lee, M. Sviridenko, J. Vondrák. Submodular maximization over multiple matroids via gen-
eralized exchange properties, Mathematics of Operations Research, V. 35 (2010), pp. 795–806.

[20] J. Lee, S. Onn and R. Weismantel, Approximate nonlinear optimization over weighted inde-
pendence systems, SIAM Journal on Discrete Mathematics 23(4) (2009), pp. 1667–1681.

24

[21] J. Leung, L. Kelly and J. Anderson. Handbook of Scheduling: Algorithms, Models, and Per-
formance Analysis. CRC Press, Inc. Boca Raton, FL, USA, 2004.

[22] C. McDiarmid, Concentration, In Probabilistic Methods for Algorithmic Discrete Mathemat-
ics, M. Habib, C. McDiarmid, J. Ramirez-Alfonsin and B. Reed editors, pp. 195–248, Springer,
1998.

[23] F. Neumann and I. Wegener, Minimum spanning trees made easier via multi-objective opti-
mization, In Proceedings of the 2005 conference on Genetic and Evolutionary Computation, pp.
763–769.

[24] K. Neumann, C. Schwindt and J. Zimmermann, Project scheduling with time windows and
scarce resources. Temporal and resource-constrained project scheduling with regular and non-
regular objective functions. Second edition. Springer-Verlag, Berlin, 2003.

[25] T. Oncan and A. Punnen, The quadratic minimum spanning tree problem: A lower bounding
procedure and an efficient search algorithm, Computers and Operations Research v.37, (2010),
1762–1773.

[26] J. Oxley, Matroid theory, Oxford University Press, New York, 1992,

[27] R. Prabhakar Raghavan and C. Thompson, Randomized rounding: a technique for provably
good algorithms and algorithmic proofs. Combinatorica 7(4): 365–374 (1987).

[28] J. Sethuraman and M. S. Squillante, Optimal scheduling of multiclass parallel machines, In
Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms (1999), 963–
964.

[29] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003.

[30] W. Schudy and M. Sviridenko, Concentration and moment inequalities for polynomials of
independent random variables, arXiv:1104.4997, extended abstract appeared in proceedings of
SODA2012.

[31] W. Schudy and M. Sviridenko, Bernstein-like concentration and moment inequalities for poly-
nomials of independent random variables: multilinear case, arXiv:1109.5193.

[32] D. Shmoys and E. Tardos, An approximation algorithm for the generalized assignment problem.
Mathematical Programming 62 (1993), no. 3, Ser. A, 461–474.

[33] M. Solomon and J. Desrosiers, Time window constrained routing and scheduling problems,
Transportation Science V. 22, No. 1, 1988, pp. 1–13.

[34] M. Skutella, Convex quadratic and semidefinite programming relaxations in scheduling, Jour-
nal of ACM 48 (2001), 206–242, FOCS 1998, pp. 472–481.

[35] F. Sourd and O. Spanjaard, A multi-objective branch-and-bound framework. Application to
the bi-objective spanning tree problem, INFORMS Journal of Computing 20 (2008), 472–484.

[36] V. Anil Kumar, M. Marathe, S. Parthasarathy and A. Srinivasan, A unified approach to
scheduling on unrelated parallel machines, Journal of the ACM V.56 (2009)

25

[37] V. Vu, Concentration of non-Lipschitz functions and applications, Probabilistic methods in
combinatorial optimization. Random Structures Algorithms 20 (2002), no. 3, 262–316.

[38] V. Vu, On the concentration of multivariate polynomials with small expectation, Random
Structures Algorithms 16 (2000), no. 4, 344-363.

[39] G. Zhou and M. Gen, An effective genetic algorithm approach to the quadratic minimum
spanning tree problem, Computers and Operations Research, v.25 (1998), 229–237.

A Fractional Swap Rounding

We need several definitions and a decomposition lemma to describe fractional swap rounding.

Definition 17. For a common independent set J ∈ I(M1)∩I(M2) and an arbitrary set of elements
I ⊆ V , the directed bipartite exchange graph DM1(J, I) is a bipartite graph with arcs (j, i) for
any pair of elements i ∈ I \ J , j ∈ J , such that J ∪ {i} \ {j} ∈ I(M1). The directed bipartite
exchange graph DM2(J, I) has an arc (i, j) for any pair of elements i ∈ I \ J , j ∈ J such that
J ∪ {i} \ {j} ∈ I(M2). The directed graph DM1,M2(J, I) is the union of two digraphs DM1(J, I)
and DM2(J, I).

Definition 18. A directed path or cycle P in DM1,M2(J, I) is called irreducible if P ∩DM1(J, I)
is a unique perfect matching on the vertex set of P in DM1(J, I) and P ∩ DM2(J, I) is a unique
perfect matching on the vertex set of P in DM2(J, I). Moreover, if P is a path, then both its
endpoints must be in J .

The next two lemmas explain why it is important to consider irreducible paths. These lemmas
were shown by Chekuri, Vondrák and Zenklusen [11] based on the framework developed in [19].

Lemma 19 ([11]). For any irreducible path in DM1,M2(J, I) we have J4V (P) ∈ I(M1)∩I(M2).

Lemma 20 ([11]). We are given I, J ∈ I(M1) ∩ I(M2) with |I| = |J |. For any integer p ≥ 2, we
can find in polynomial time a collection of irreducible paths and cycles {P1, . . . , Pm} of length at
most 2p− 1 and m ≤ p|I 4 J | in DM1,M2(I, J) with coefficients γi ≥ 0,

∑m
i=1 γi = 1 such that for

some γ > 0,
m∑
i=1

γiχ(Pi) = γ
(

(1− 1

p
)χ(I \ J) + χ(J \ I)

)
.

Chekuri, Vondrák and Zenklusen used these lemmas in their algorithm to merge common in-
dependent sets from the convex representation of x∗ into one solution. The merge is performed in
many phases each consisting of many applications of the lemma.

We prove several easy corollaries that allows us to merge a common independent set J ∈
I(M1)∩ I(M2) with the fractional solution x∗. Then, our algorithm performs a certain (random)
number of merges and outputs the result. This significantly simplifies the algorithm and allows us
analyze it for the case of polynomials.

Corollary 21. We are given I, J ∈ I(M1) ∩ I(M2) and |I| = |J |. For any integer p ≥ 2, we can
find in polynomial time a collection of set pairs {(Ai, Bi)} with coefficients γ′i ≥ 0,

∑
i γ
′
i = 1 such

that for some γ′ > 0,

26

1. Ai ⊆ J , Bi ⊆ I, |Ai|, |Bi| ≤ p, Ai 6= ∅ for all i;

2. (J \Ai) ∪Bi ∈ I(M1) ∩ I(M2);

3. Bi ∩ (J \Ai) = ∅;

4.
∑

i γ
′
iχ(Ai) = γ′χ(J) and

∑
i γ
′
iχ(Bi) = γ′(1− 1

p)χ(I).

Proof. Find a collection of paths {P1, . . . , Pm} and weights γi as in Lemma 20. Then, enumerate
all elements in the set I ∩J and let ui be the i-th element for i = 1, . . . , |I ∩J |. Let Γ = 1+γ|I ∩J |
and γ′ = γ/Γ. We define

• Ai = J ∩ V (Pi), Bi = I ∩ V (Pi), γ
′
i = γi/Γ for i = 1, . . . ,m;

• Ai = {ui−m}, Bi = {ui−m}, γ′i = γ(1− 1/p)/Γ for i = m+ 1, . . . ,m+ |I ∩ J |;

• Ai = {ui−(m+|I∩J |)}, Bi = ∅, γ′i = γ/(pΓ), for i = m+ |I ∩ J |+ 1, . . . ,m+ 2|I ∩ J |.

We now verify that all sets Ai, Bi satisfy the required conditions. The property 1 follows from
the fact that |Pi| ≤ 2p and Pi alternates between sets I \ J and J \ I. Therefore, |Ai| ≤ p and
|Bi| ≤ p for i ≤ m; and |Ai|, |Bi| ≤ 1 < p for i > m. Also by construction, Ai ⊂ J and Bi ⊂ I.

To show Property 2, we use Lemma 19. We get for i ≤ m,

(J \Ai) ∪Bi = J 4 V (Pi) ∈ I(M1) ∩ I(M2).

For i > m, (J \Ai) ∪Bi ⊂ J , hence (J \Ai) ∪Bi ∈ I(M1) ∩ I(M2).
Property 3 holds for i ≤ m, because Bi ⊆ I \ J (see Definition 17) for i ≤ m. Property 3 holds

for i > m, because Bi ⊆ Ai for i ≤ m.
We now show Property 4,∑

i

γ′iχ(Ai) =
γ

Γ
χ(J \ I) +

γ(1− 1/p)

Γ
χ(I ∩ J) +

γ/p

Γ
χ(I ∩ J)

=
γ

Γ
χ(J) = γ′χ(J).

Similarly, ∑
i

γ′iχ(Bi) =
γ

Γ
(1− 1/p)χ(I \ J) +

γ(1− 1/p)

Γ
χ(I ∩ J)

= (1− 1/p)
γ

Γ
χ(I) = (1− 1/p)γ′χ(I).

Finally, ∑
i

γ′i =
1

Γ

(m∑
i=1

γi + |I ∩ J | γ
(
1− 1

p

)
+ |I ∩ J |γ

p

)
=

1 + γ|I ∩ J |
1 + γ|I ∩ J |

= 1.

Lemma 22. For every common independent set J ∈ I(M1)∩I(M2), vector x∗ ∈ P(M1)∩P(M2)
and parameter p ∈ {2, . . . , r}, there exists a probabilistic distribution of sets (A,B), A ⊂ J and
B ⊂ V , a positive α ≥ 1/r, and vector x̃ = (1− 1/p)x∗ such that

27

• π(J) ≡ (J \A) ∪B ∈ I(M1) ∩ I(M2);

• for every u /∈ J , Pr [u ∈ π(J)] = αx̃u;

• for every u ∈ J , Pr [u /∈ π(J)] = α(1− x̃u);

• |A|, |B| ≤ p; A 6= ∅.

Moreover, the distribution over pairs (A,B) can be computed in polynomial-time.

Proof. Represent x∗ as a convex combination [29] of common independent sets Ik ∈ I(M1)∩I(M2)
with coefficient λk:

x∗ =
∑
k

λkχ(Ik).

Then, for every Ik, using Corollary 21, find a collection of pairs (Aki, Bki) such that∑
i

γkiχ(Aki) = γkχ(J) and
∑
i

γkiχ(Bki) = γk(1−
1

p
)χ(Ik).

Let

Γ =
∑
k

λk
γk
.

Pick a random k̂ with probability λk̂/(γk̂Γ), and then a random î with probability γk̂î. Thus, we
pick a pair (k, i) with probability λkγki/(γkΓ). Output (A,B) = (Ak̂î, Bk̂î), π(J) = (J \A) ∪B.

We now compute Pr [u ∈ π(J)]. If u /∈ J , then

Pr [u ∈ π(J)] = Pr [u ∈ B] = E
[
χu(Bk̂î)

]
=

∑
k

λk
γkΓ

(∑
i

γkiχu(Bki)
)

=
∑
k

λk
γkΓ
× γk(1−

1

p
)χu(Ik)

=
1

Γ
(1− 1

p
)
∑
k

λkχu(Ik) =
1

Γ
(1− 1

p
)x∗u.

If u ∈ J , then, similarly,

Pr [u /∈ π(J)] = Pr [u ∈ A \B] = E
[
χu(Ak̂î \Bk̂î)

]
=

∑
k

λk
γkΓ

(∑
i

γkiχu(Aki \Bki)
)
.

If u ∈ Bki, then u ∈ Aki, because Bki ∩ (J \Aki) = ∅ (see Corollary 21, item 3) and u ∈ J . Hence,
χu(Aki \Bki) = χu(Aki)− χu(Bki) and

Pr [u /∈ π(J)] =
∑
k

λk
γkΓ

(∑
i

γki(χu(Aki)− χu(Bki))
)

=
∑
k

λk
γkΓ
× γk

(
χu(J)− (1− 1

p
)χu(Ik)

)
=

1

Γ

∑
k

λk

(
χu(J)− (1− 1

p
)χu(Ik)

)
=

1

Γ
(1− (1− 1

p
)x∗u).

28

Now, we estimate α = 1/Γ. It is easy to see that for every u ∈ J ,

Pr [u ∈ A] =
∑
k

λk
γkΓ

(∑
i

γkiχu(Aki)
)

=
χu(J)

Γ
=

1

Γ
.

Since, A 6= ∅, we derive E|A| ≥ 1. On the other hand, E|A| = αr. Therefore, α ≡ 1/Γ ≥ 1/r.

Lemma 5. For every common independent set J ∈ I(M1)∩I(M2), vector x∗ ∈ P(M1)∩P(M2),
parameter p ∈ {2, . . . , r}, and x̃ = (1 − 1/p)x∗ there exists a probabilistic distribution of sets
π(J) ∈ I(M1) ∩ I(M2), such that

• for every u ∈ J , Pr [u /∈ π(J)] = (1− x̃u)/r;

• for every u /∈ J , Pr [u ∈ π(J)] = x̃u/r;

• |J 4 π(J)| ≤ 2p.

Moreover, the distribution over sets π(J) can be computed in polynomial-time (i.e. there is a
polynomial number of sets with non-zero probabilities and a polynomial time algorithm to compute
such non-zero probabilities).

Proof. The algorithm generates sets A, B as in Lemma 22. Then, it outputs π(J) = (J \ A) ∪ B
with probability (αr)−1; and π(J) = J with probability 1− (αr)−1.

B On Theorem 14

In this section, we explain why Theorem 14 easily follows from Theorem 3.15 (page 224), McDi-
armid [22].

Theorem 23 (see Theorem 3.15 in [22]). Let x(t) (where t ∈ T) be a martingale w.r.t. the filtration
F(t). Suppose that ∆x(t) = x(t+ ∆t)− x(t) ≤ b a.s. for a (nonrandom) constant b. Then for any
λ ≥ 0 and v ≥ 0,

Pr
[
x(1)−E [x(1)] ≥ λ and V ≤ v

]
≤ e−

λ2

2v(1+(bλ/(3v))) ,

where the random variable V (the predictable quadratic variation of x(t)) is the sum of conditional
variances

V =
∑
t∈T

Var [∆x(t) | F(t)] =
∑
t∈T

E
[
(∆x(t)−E [∆x(t) | F(t)])2 | F(t)

]
.

We derive an easy corollary (Theorem 14) which is convenient for our purposes.

Proof of Theorem 14. As in the rest of the paper, we assume that T = {t0 + k∆t : 0 ≤ k ≤ N} for
some N and ∆t = (1− t0)/N . Let µ(t) =

∑
t′∈T :t′<t ∆µ(t′) and y(t) = x(t)− µ(t). Observe, that

Pr

[
max
t∈T

(x(t))−
∑
t∈T

∆µ(t) ≥ λ and V ≤ v

]
≤ Pr

[
max
t∈T

(x(t)−
∑

t′∈T :t′<t

∆µ(t′)) ≥ λ and V ≤ v

]

= Pr

[
max
t∈T

y(t) ≥ λ and V ≤ v
]
.

29

Since E [∆x(t) | F(t)] ≤ ∆µ(t), y(t) is a supermartingale. Note that

Vy =
∑
t∈T

Var [∆y(t) | F(t)] =
∑
t∈T

Var [∆x(t) | F(t)] = V,

because ∆µ(t) is a nonrandom sequence. Define

y′(t) =

{
y(t), if max{y(t′) : t′ ∈ T ; t′ ≤ t} < λ;

λ, otherwise.

It is easy to see that y′(t+ ∆t)− y′(t) ≤ y(t+ ∆t)− y(t), thus y′(t) is also a supermartingale, and

y′(t+ ∆t)− y′(t) ≤ y(t+ ∆t)− y(t) ≤ x(t+ ∆t)− x(t) ≤ b.

For ∆y′(t) = y(t′ + ∆t)− y′(t),

Vy′ =
∑
t∈T

Var
[
∆y′(t) | F(t)

]
≤
∑
t∈T

Var [∆y(t) | F(t)] = V.

We have

Pr

[
max
t∈T

y(t) ≥ λ and V ≤ v
]

= Pr
[
y′(1) = λ and V ≤ v

]
≤ Pr

[
y′(1) = λ and Vy′ ≤ v

]
.

It is now sufficient to show that

Pr
[
y′(1) = λ and Vy′ ≤ v

]
≤ e−

λ2

2v(1+(bλ/(3v))) .

We would like to apply Theorem 23. The process y′(t) satisfies all the conditions of Theorem 23
except y′(t) is not a martingale, but a supermartingale. However, we can slightly increase the
values of ∆y′(t), so that y′′(t) is a martingale. To do so, we pick a threshold ξ(t) ≤ 0 (which is a
F(t) measurable random variable) so that E [∆y′′(t) | F(t)] = 0, where

∆y′′(t) = max(y′(t), ξ(t)).

Such ξ(t) exists since E [∆y′(t) | F(t)] ≤ 0, but E [max(∆y′(t), 0) | F(t)] ≥ 0. Now, y′′(t) =∑
t′∈T :t′<t ∆y′′(t) is a martingale. We have ∆y′′(t) ≤ max(∆y′(t), 0) ≤ b, and

Vy′′ =
∑
t∈T

Var
[
∆y′′(t) | F(t)

]
≤
∑
t∈T

Var
[
∆y′(t) | F(t)

]
≤ Vy′ .

So, by Theorem 23,

Pr
[
y′(1) = λ and Vy′ ≤ v

]
≤ Pr

[
y′′(1) = λ and Vy′′ ≤ v

]
e
− λ2

2v(1+(bλ/(3v))) .

30

