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Chain Independence and Common Information
Konstantin Makarychev and Yury Makarychev

Abstract—We present a new proof of a celebrated result
of Gács and Körner that the common information is far
less than the mutual information. Consider two sequences
α1, . . . αn and β1, . . . , βn of random variables, where pairs
(α1, β1), . . . , (αn, βn) are independent and identically dis-
tributed. Gács and Körner proved that it is not possible to extract
“common information” from these two sequences unless the joint
distribution matrix of random variables (αi, βi) is a block matrix.

In 2000, Romashchenko introduced a notion of chain indepen-
dent random variables and gave a simple proof of the result of
Gács and Körner for chain independent random variables. Fur-
thermore, Romashchenko showed that boolean random variables
α and β are chain independent unless α = β a.s. or α = 1 − β
a.s. In this paper, we generalize this result to arbitrary (finite)
distributions of α and β and thus give a simple proof of the
result of Gács and Körner.

Index Terms—Chain independent random variables, common
information, rate region.

I. INTRODUCTION

Ahlswede, Gács, Körner, Witsenhausen and Wyner [1], [2],
[4], [7], [8] studied the problem of extraction of “common
information” from a pair of random variables. The simplest
form of this problem is the following: Fix some distribution for
a pair of random variables α and β. Consider n independent
pairs (α1, β1), . . . , (αn, βn); each has the same distribution as
(α, β). We want to extract “common information” from the
sequences α1, . . . αn and β1, . . . , βn, i.e. find a random vari-
able γ such that H(γ|(α1, . . . , αn)) and H(γ|(β1, . . . , βn))
are small. We say that “extraction of common information is
impossible” if the entropy of any such variable γ is small.

Let us show that this is the case if α and β are independent.
In this case αn = (α1, . . . , αn) and βn = (β1, . . . , βn) are
independent. Recall the well-known inequality

H(γ) ≤ H(γ|αn) +H(γ|βn) + I(αn : βn).

Here I(αn : βn) = 0 (because αn and βn are independent);
two other summands on the right hand side are small by our
assumption.

It turns out that a similar statement holds for dependent
random variables. However, there is one exception. If the joint
probability matrix of (α, β) can be divided into blocks, there
is a random variable τ that is a function of α and a function
of β (“block number”). Then γ = (τ1, . . . , τn) is common
information of αn and βn.

It was shown by Gács and Körner [4] that this is the
only case when there exists common information. Their
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original proof is quite technical. Several years ago another
approach was proposed by Romashchenko [5] using “chain
independent” random variables. Romashchenko introduced the
notion of chain independent random variables (which he called
conditionally independent random variables) and showed that
extraction of common information from chain independent
random variables is impossible. We prove that if the joint
probability matrix of a pair of random variables (α, β) is
not a block matrix, then α and β are chain independent.
We also show several new information inequalities for chain
independent random variables.

II. CHAIN INDEPENDENT RANDOM VARIABLES

Consider four random variables α, β, α∗, β∗. Suppose that
α∗ and β∗ are independent, α and β are independent given
α∗, and also independent given β∗, i.e., I(α∗ : β∗) = 0, I(α :
β|α∗) = 0 and I(α : β|β∗) = 0. Then we say that α and β
are chain independent of order 1. (Chain independent random
variables of order 0 are independent random variables.)

We consider chain independence of random variables as
a property of their joint distributions. If a pair of random
variables α and β has the same joint distribution as a pair
of chain independent random variables α0 and β0 (on another
probability space), we say that α and β are chain independent.

Replacing the requirement of independence of α∗ and β∗

by the requirement of chain independence of order 1, we get
the definition of chain independent random variables (α and
β) of order 2 and so on.

Definition 1: We say that α and β are conditionally inde-
pendent with respect to α∗ and β∗ if α and β are indepen-
dent given α∗, and they are also independent given β∗, i.e.,
I(α : β|α∗) = I(α : β|β∗) = 0.

Definition 2 (Romashchenko [5]): Two random variables α
and β are called chain independent random variables of order
k (k ≥ 0) if there exists a probability space Ω and a sequence
of pairs of random variables

(α0, β0), (α1, β1), . . . , (αk, βk)

on it such that
(a) The pair (α0, β0) has the same distribution as (α, β).
(b) αi and βi are conditionally independent with respect to

αi+1 and βi+1 when 0 ≤ i < k.
(c) αk and βk are independent random variables.
The sequence

(α0, β0), (α1, β1), . . . , (αk, βk)

is called a derivation for (α, β).
We say that random variables α and β are chain independent

if they are chain independent of some order k.
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The notion of chain independence can be applied for anal-
ysis of common information using the following observations
(see below for proofs).

Lemma 1: Consider chain independent random variables α
and β of order k. Let (α1, β1), . . . , (αn, βn) be a sequence
of random variables such that all (αi, βi) are independent,
and each (αi, βi) is distributed as (α, β). Then the random
variables αn = (α1, . . . , αn) and βn = (β1, . . . , βn) are chain
independent of order k.
The proof is given in Section IV (see statement (e)).

Theorem 1 (Romashchenko [5]): If random variables α and
β are chain independent of order k, and γ is an arbitrary
random variable (on the same probability space), then

H(γ) ≤ 2kH(γ|α) + 2kH(γ|β).

The proof is given in Section III.

Definition 3: An m × n matrix is called a block matrix if
(after some permutation of its rows and columns) it consists
of four blocks; the blocks on the diagonal are not equal to
zero; the blocks outside the diagonal are equal to zero.

Formally, A is a block matrix if the set of its rows
{1, . . . ,m} can be divided into two disjoint nonempty sets
I1 and I2 (I1 t I2 = {1, . . . ,m}) and the set of its
columns {1, . . . , n} can be divided into two sets J1 and J2
(J1 t J2 = {1, . . . , n}) in such a way that each of the
blocks {aij : i ∈ I1, j ∈ J1} and {aij : i ∈ I2, j ∈ J2}
contains at least one nonzero element, and all the elements
outside these two blocks are equal to 0, i.e. aij = 0 when
(i, j) ∈ (I1 × J2) ∪ (I2 × J1).

Theorem 2: Random variables are chain independent if and
only if their joint probability matrix is not a block matrix.

Using these statements, we conclude that if the joint prob-
ability matrix of a pair of random variables (α, β) is not a
block matrix, then no information can be extracted from a
sequence of n independent random variables each with the
same distribution as (α, β):

H(γ) ≤ 2kH(γ|αn) + 2kH(γ|βn)

for some k (that does not depend on n) and for any random
variable γ.

III. PROOF OF THEOREM 1

Theorem 1 (Romashchenko [5]): If random variables α
and β are chain independent of order k, and γ is an arbitrary
random variable (on the same probability space), then

H(γ) ≤ 2kH(γ|α) + 2kH(γ|β).

Proof : The proof is by induction on k. The statement
is already proved for independent random variables α and β
(k = 0).

Suppose α and β are conditionally independent with respect
to chain independent random variables α∗ and β∗ of order
k − 1. From the conditional form of the inequality

H(γ) ≤ H(γ|α) +H(γ|β) + I(α : β)

(α∗ is added everywhere as a condition) it follows that

H(γ|α∗) ≤ H(γ|αα∗) +H(γ|βα∗) + I(α : β|α∗) =

H(γ|αα∗) +H(γ|βα∗) ≤ H(γ|α) +H(γ|β).

Similarly, H(γ|β∗) ≤ H(γ|α) + H(γ|β). By the induction
hypothesis H(γ) ≤ 2n−1H(γ|α∗)+2n−1H(γ|β∗). Replacing
H(γ|α∗) and H(γ|β∗) by their upper bounds, we get H(γ) ≤
2nH(γ|α) + 2nH(γ|β).

Corollary 1.1: If the joint probability matrix A of a pair
of random variables is a block matrix, then these random
variables are not chain independent.

Proof: Suppose that the joint probability matrix A of
random variables (α, β) is a block matrix and these random
variables are chain independent of order k.

Let us divide the matrix A into blocks I1× J1 and I2× J2
as in Definition 3. Observe, that α ∈ I1 if and only if β ∈ J1.
Define a new random variable γ. Let γ = 1, if α ∈ I1 and
β ∈ J1, and γ = 2, if α ∈ I2 and β ∈ J2. Then, the random
variable γ is a function of α and at the same time a function
of β. Therefore, H(γ|α) = 0 and H(γ|β) = 0. However,
γ takes two different values with positive probability. Hence
H(γ) > 0, which contradicts Theorem 1.

A similar argument shows that the order of chain indepen-
dence should be large if the matrix is close to a block matrix.

IV. PROOF OF THEOREM 2

For brevity, we call joint probability matrices of chain
independent random variables good matrices.

The proof of Theorem 2 consists of three main steps. First,
we prove, that the set of good matrices is dense in the set of
all joint probability matrices. Then we prove that any matrix
without zero elements is good. Finally, we consider the general
case and prove that any matrix that is not a block matrix is
good.

The following statements are used in the sequel.
(a) The joint probability matrix of independent random

variables is a matrix of rank 1 and vice versa. In particular,
all (joint probability) matrices of rank 1 are good.

(b) If α and β are chain independent, α′ is a function of α,
and β′ is a function of β, then α′ and β′ are chain independent.
(Indeed, if α and β are conditionally independent with respect
to some α∗ and β∗, then α′ and β′ are also conditionally
independent with respect to α∗ and β∗.)

(c) If two random variables are chain independent of order
k, then they are chain independent of order l for any l > k.
(We can add some constant random variables to the end of the
derivation.)

(d) Assume that chain independent random variables α1

and β1 are defined on a probability space Ω1 and chain
independent random variables α2 and β2 are defined on a
probability space Ω2. Consider random variables (α1, α2) and
(β1, β2) that are defined in a natural way on the product space
Ω1 × Ω2. Then (α1, α2) and (β1, β2) are chain independent.
Indeed, for each pair (αi, βi) consider its derivation

(α0
i , β

0
i ), (α1

i , β
1
i ), . . . , (αl

i, β
l
i)
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(using (c), we may assume that both derivations have the same
length l).

Then the sequence

((α0
1, α

0
2), (β0

1 , β
0
2)), . . . , ((αl

1, α
l
2), (βl

1, β
l
2))

is a derivation for the pair of random variables
((α1, α2), (β1, β2)). For example, random variables
(α1, α2) = (α0

1, α
0
2) and (β1, β2) = (β0

1 , β
0
2) are independent

given the value of (α1
1, α

1
2), because α1 and β1 are

independent given α1
1, variables α2 and β2 are independent

given α1
2, and the measure on Ω1×Ω2 is equal to the product

of the measures on Ω1 and Ω2.
Applying statement (d) (n − 1) times, we get Lemma 1.

Combining Lemma 1 and statement (b), we get the following
statement:

(e) Let (α1, β1), . . . , (αn, βn) be independent and identi-
cally distributed random variables. Assume that the variables
in each pair (αi, βi) are chain independent. Then any random
variables α′ and β′, where α′ depends only on α1, . . . , αn and
β′ depends only on β1, . . . , βn, are chain independent.

Definition 4: Denote

Dε =

(
1/2− ε ε

ε 1/2− ε

)
(where 0 ≤ ε ≤ 1/2).

The matrix D1/4 corresponds to a pair of independent
random bits; as ε tends to 0 these bits become more dependent
(though each is still uniformly distributed over {0, 1}).

Lemma 2 (Special case of Lemma 4 in [5]): (i) D1/4 is
a good matrix.

(ii) If Dε is a good matrix then Dε(1−ε) is good.
(iii) There exists an arbitrary small ε such that Dε is good.

Proof:
(i) The matrix D1/4 is of rank 1, hence it is good (indepen-

dent random bits).
(ii) Consider a pair of random variables α and β distributed

according to Dε.
Define new random variables α′ and β′ as follows:
• if (α, β) = (0, 0) then (α′, β′) = (0, 0);
• if (α, β) = (1, 1) then (α′, β′) = (1, 1);
• if (α, β) = (0, 1) or (α, β) = (1, 0) then

(α′, β′) =


(0, 0) with probability ε/2;
(0, 1) with probability (1− ε)/2;
(1, 0) with probability (1− ε)/2;
(1, 1) with probability ε/2.

The joint probability matrix of α′ and β′ given α = 0 is
equal to (

(1− ε)2 ε(1− ε)
ε(1− ε) ε2

)
and its rank equals 1. Therefore, α′ and β′ are independent
given α = 0.

Similarly, the joint probability matrix of α′ and β′ given
α = 1, β = 0 or β = 1 has rank 1. This yields that α′ and β′

are conditionally independent with respect to α and β, hence
α′ and β′ are chain independent.

The joint distribution of α′ and β′ is(
1/2− ε(1− ε) ε(1− ε)

ε(1− ε) 1/2− ε(1− ε)

)
,

hence Dε(1−ε) is a good matrix.
(iii) Consider the sequence εn defined by ε0 = 1/4 and

εn+1 = εn(1−εn). The sequence εn tends to zero (its limit is
a root of the equation x = x(1−x)). It follows from statements
(i) and (ii) that all matrices Dεn are good.

Note: The order of chain independence of Dε tends to
infinity as ε → 0. Indeed, applying Theorem 1 to random
variables α and β with joint distribution Dε and to γ = α, we
obtain

H(α) ≤ 2k(H(α|α) +H(α|β)) = 2kH(α|β).

Here H(α) = 1; for any fixed value of β the random variable
α takes two values with probabilities 2ε and 1− 2ε, therefore

H(α|β) = −(1−2ε) log2(1−2ε)−2ε log2(2ε) = O(−ε log2 ε)

and, if Dε corresponds to chain independent variables of order
k, then

2k ≥ H(α)/H(α|β) = 1/O(−ε log2 ε)→∞

as ε→ 0.
We showed that for every positive ε, there exists two

chain independent random variables α and β each distributed
uniformly in {0, 1} such that Pr(α 6= β) ≤ ε. We generalize
this statement to distributions on a larger domain.

Corollary 2.1: For every positive ε, for every natural T ,
there exist two chain independent random variables α and β
uniformly distributed on the boolean cube {0, 1}T such that
Pr(α 6= β) ≤ ε and for every u, v ∈ {0, 1}T , Pr(α = u, β =
v) = Pr(α = v, β = u).

Proof: Consider T independent pairs of random variables
(α1, β1), . . . , (αT , βT ); each variable (αi, βi) is distributed
according to Dε (for sufficiently small ε). The random vari-
ables α = (α1, . . . , αT ) and β = (β1, . . . , βT ) are uniformly
distribute on the boolean cube {0, 1}T . They are chain inde-
pendent by Lemma 1. We have

Pr(α 6= β) ≤
T∑

i=1

Pr(αi 6= βi) ≤ ε′ ≡ Tε.

Since the joint probability matrix of αi and βi is symmetric
for each i, and all random variables (αi, βi) are independent,
we have Pr(α = u, β = v) = Pr(α = v, β = u).

Lemma 3: For every sequence p1, . . . , pn ∈ (0, 1) with p1+
· · · + pn = 1, and for every positive ε > 0, there exist two
chain independent random variables α and β such that Pr(α =
i) = Pr(β = i) = pi (for i ∈ {1, . . . , n}), Pr(α 6= β) ≤ ε
and the joint probability matrix of α and β is symmetric i.e.,
Pr(α = i, β = j) = Pr(α = j, β = i) (for i, j ∈ {1, . . . , n}).

Proof: Fix an integer T ∈ N such that 2−Tn ≤ ε/2
and let α and β be two chain independent random variables
uniformly distributed on {0, 1}T as in Corollary 2.1 such that
Pr(α 6= β) ≤ ε/2. Loosely speaking, our goal is to represent
the desired random variables α′ and β′ as α′ = f(α) and
β′ = f(β) for some function f . Then, α′ and β′ are chain
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independent (by statement (b)), and Pr(α′ 6= β′) ≤ Pr(α 6=
β) ≤ ε. To do so, we express each pi as pi = qi/2

T + ri/2
T ,

where qi = bpi2T c is an integer, and ri = (pi2
T−qi) ∈ (0, 1).

Then, we arbitrary partition 2T vertices of the boolean cube
{0, 1}T in n sets Q1, . . . , Qn of size |Qi| = qi and a set R
of remaining vertices. This is possible because

∑n
i=1 |Qi| =∑n

i=1 b2T pic ≤ 2T . If all ri were equal to 0, we would let
f(u) = i for u ∈ Qi, and get Pr(f(α) = i) = Pr(α ∈ Qi) =
pi. In the general case, we define two independent random
variables ξ and η,

Pr(ξ = i) = Pr(η = i) =
ri
|R|

.

Observe, that
∑

i ri = |R|, hence ξ and η are well defined.
We define f : {0, 1}T × {1, . . . , n} → {1, . . . , n} as follows:

f(u, j) =

{
i, if u ∈ Qi for some i;
j, if u ∈ R;

and let α′ = f(α, ξ) and β′ = (β, η). The random variables
α and β are chain independent, the random variables ξ
and η are independent, thus the pairs (α, ξ) and (β, η) are
chain independent. By statement (b), f(α, ξ) and f(β, η) are
chain independent. Verify that α′ and β′ satisfy the desired
properties.

Pr(f(α, ξ) = i) = Pr(α ∈ Qi) + Pr(α ∈ R) · Pr(ξ = i)

=
qi
2T

+
|R|
2T
· ri
|R|

= pi.

Then,

Pr(f(α, ξ) 6= f(β, η)) ≤ Pr(α 6= β) + Pr(α ∈ R)

=
ε

2
+

n

2T
≤ ε.

Finally, our construction is completely symmetric with respect
to α′ and β′, thus Pr(α′ = i, β′ = j) = Pr(α′ = j, β′ = i)
for all i and j.

We now prove a lemma that defines chain independence in
terms of matrices. Denote by S(M) the sum of all elements
of a matrix M .

Lemma 4: Consider a matrix N whose elements are matri-
ces Nij of the same size. If

(a) all Nij contain only nonnegative elements;
(b) the sum of matrices in each row and in each column of

the matrix N is a matrix of rank 1;
(c) the matrix P with elements pij = S(Nij) is a good joint

probability matrix;
then the sum of all the matrices Nij is a good matrix.

Proof: This lemma is a reformulation of the definition of
chain independent random variables. Consider random vari-
ables α∗, β∗ such that the probability of the event (α∗, β∗) =
(i, j) is equal to pij , and the probability of the event

α = k, β = l, α∗ = i, β∗ = j

is equal to the (k, l)-th element of the matrix Nij .
The sum of matrices Nij in a row i corresponds to the

distribution of the pair (α, β) given α∗ = i; the sum of
matrices Nij in a column j corresponds to the distribution

of the pair (α, β) given β∗ = j; the sum of all the matrices
Nij corresponds to the distribution of the pair (α, β).

Example: Using Lemma 4, we can prove Lemma 2 as
follows. Consider the matrix

N =
1

2


1− 2ε 0

0 0
ε2 ε(1− ε)

ε(1− ε) ε2

ε2 ε(1− ε)
ε(1− ε) ε2

0 0
0 1− 2ε

 .

The sum of all elements Nij equals Dε(1−ε). The sum of
matrices in each row and each column has rank 1. The matrix
P (with pij = S(Nij), see Lemma 4 item (c)) equals Dε.
Hence, if Dε is good, then Dε(1−ε) is good.

We will use the following definition.
Definition 5: An r-matrix is a matrix with nonnegative

elements and with a “rectangular” support i.e., a matrix A is
an r-matrix if for some set of rows I and some set of columns
J , aij > 0, if (i, j) ∈ I × J and aij = 0, otherwise.

Lemma 5: Every r-matrix M is the sum of some r-matrices
of rank 1 with the same support as M .

Proof: Let the rectangle I × J be the support of M .
Consider the basis Eij in the vector space of matrices whose
support is a subset of I × J . (Here Eij is the matrix that has
1 in the (i, j)-position and 0 elsewhere.)

The matrix M has positive coordinates in the basis Eij . Let
us approximate each matrix Eij by a slightly different matrix
E′ij of rank 1 with support I × J :

E′ij =

(
ēi + ε

∑
k∈I

ēk

)
·

(
ēj + ε

∑
l∈J

ēl

)T

,

where ē1, . . . , ēn is the standard basis in Rn.
The coordinates cij of M in the new basis E′ij continuously

depend on ε. Thus they remain positive if ε is sufficiently
small. So taking a sufficiently small ε we get the required
representation of M as the sum of matrices of rank 1 with
support I × J :

M =
∑

(i,j)∈I×J

cijE
′
ij .

Lemma 6: Every r-matrix is good.
Proof: Let M be an r-matrix with support I × J . Using

Lemma 5, we represent it as a sum of n rank 1 matrices:
M = A(1) + · · · + A(T ). To illustrate the idea of the proof,
consider a matrix Ñ as in Lemma 4:

A(1) 0 0 0
0 A(2) 0 0
. . . . . . . . . . . . . . . . . . . .

0 0 0 A(T )

 .

The sum of the matrices in each row and in each column is a
matrix of rank 1. The sum of all entries equals M . The only
problem is that the matrix p̃ij = S(Ñij) is diagonal and hence
it is not good. To overcome this obstacle, we replace the matrix
P̃ with a good “almost diagonal” matrix P using Lemma 3,
and then modify matrices Nij to satisfy pij = S(Nij).
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Pick an arbitrary i∗ ∈ I an j∗ ∈ J (then a
(t)
i∗j∗ > 0 for

every t), fix a positive ε < mint a
(t)
i∗j∗ , and let E = Ei∗j∗ (as in

Lemma 5, Ei∗j∗ has 1 in the (i∗, j∗)-position, and 0 elsewhere
else). By Lemma 3, there exist two chain independent random
variables α and β such that Pr(α = t) = Pr(β = t) =
S(A(t)), Pr(α 6= β) ≤ ε and the joint probability matrix of α
and β is symmetric. Denote this matrix by P .

Now define matrices Nij : Nii = A(i) −
∑

j 6=i pij · E and
Nij = pij · E (for i 6= j). Observe that S(Nii) = S(A(i)) −∑

j 6=i pij = Pr(α = i) − Pr(α = i, β 6= i) = Pr(α =
i, β = i) ≡ pii. Verify that matrix N satisfies all conditions
of Lemma 4. All elements of each matrix Nij are nonnegative,
because elements of A(i) are nonnegative, elements of E are
nonnegative, and i∗j∗-th element of Nii equals

a
(i)
i∗j∗ −

∑
j:j 6=i∗

Pr(α = i∗, β = j) > ε− Pr(α 6= β) > 0.

The sum of matrices Nij in row i equals
(
A(i)−

∑
j 6=i pijE

)
+∑

j 6=i pijE = A(i), which is a rank 1 matrix. Similarly, the
sum all matrices in each column is a rank 1 matrix. The sum
of all matrices Nij equals M , and therefore M is good.

Our proof relies on the existence of a position i∗j∗ such that
all a(t)i∗j∗ are positive. Such i∗, j∗ exist if M is an r-matrix, but
not necessarily in the general case. To deal with the general
case we need to define an r-decomposition of M .

Definition 6: An r-decomposition of a matrix is its expres-
sion as a (finite) sum of r-matrices M = M1 + M2 + . . .
of the same size such that the supports of Mi and Mi+1

intersect (for any i). The length of the decomposition is the
number of the summands; the r-complexity of a matrix is the
length of its shortest decomposition (or +∞, if there is no
such decomposition).

Lemma 7: Every non-block matrix M with nonnegative
elements has an r-decomposition.

Proof: Consider a graph whose vertices are nonzero
entries of M . Two vertices are connected by an edge if and
only if they are in the same row or column. By assumption, the
matrix is a non-block matrix, hence the graph is connected and
there exists a (possibly non-simple) path (i1, j1) . . . (im, jm)
that visits each vertex of the graph at least once.

Express M as the sum of matrices corresponding to the
edges of the path: each edge corresponds to a matrix whose
support consists of the endpoints of the edge; each positive
element of M is distributed among matrices corresponding
to the adjacent edges. Each of these matrices is of rank 1.
So the expression of M as the sum of these matrices is an
r-decomposition.

Corollary 7.1: The r-complexity of any non-block matrix
is finite.

Lemma 8: Any non-block matrix M is good.
Proof: The proof is by induction on the r-complexity of

M . For matrices of r-complexity 1, we apply Lemma 6.
Suppose that M has r-complexity 2. In this case M is equal

to the sum of some r-matrices A and B such that their supports
are intersecting rectangles. We use the same idea as in the
proof of Lemma 6. By Lemma 5, each of the matrices A and

B is the sum of matrices of rank 1 with the same support.
Suppose, for example, that A = A(1) +A(2) and B = B(1) +
B(2). Take a matrix E with only one nonzero element that is
located in the intersection of the supports of A and B. If this
nonzero element is sufficiently small, then all the elements of
the matrix N :

A(1) − 3E E E E
E A(2) − 3E E E
E E B(1) − 3E E
E E E B(2) − 3E


are nonnegative matrices. The sum of the elements of each
of the matrices that form the matrix N is positive. Hence the
matrix pij = S(Nij) is an r-matrix and is good. The sum of
the elements in each row and in each column is of rank 1
since it is either A(t) or B(t). Using Lemma 4 we conclude
that the matrix M is good.

Suppose now that the r-complexity of matrix M is n.
Represent M as a sum of r-matrices: M = A(1)+ · · ·+A(n),
such that the supports of A(i) and A(i + 1) are intersecting
rectangles. Then, using Lemma 5, write each A(i) as a sum
of rank 1 matrices: A(i) = A(i, 1) + · · · + A(i, T ). We may
assume that T is the same for every i, since we can always
increase T by replacing A(i, t) with two matrices A′ and A′′:
A′(i, t) = A′′(i, t) = A(i, t)/2. For each i pick a matrix Ei
with only one nonzero element that is located in the intersec-
tion of the supports of A(i) and A(i+ 1); we let this element
be small enough (we set E0 = En = 0). We now define matrix
N . The indices of rows and columns of N are pairs (i, t). Let
N(i,t),(i,t) = A(i, t)−(2T−1)Ei−1−(2T−1)Ei, N(i,s),(i,t) =
Ei−1 + Ei (for s 6= t), N(i,s),(i+1,t) = N(i+1,t),(i,s) = Ei and
N(i,s),(j,t) = 0 if |i − j| > 1. For example, if n = 4 and
T = 1, then matrix N is defined as follows:(

A(1)−E1 E1 0 0
E1 A(2)−E1−E2 E2 0
0 E2 A(3)−E2−E3 E3
0 0 E3 A(4)−E3

)
.

The sum of all matrices in row (i, t) (or column (i, t)) equals
A(i, t) and hence is of rank 1. The sum of all matrices
equals M . Finally, the matrix p(i,s)(j,t) = S(N(i,s)(j,t)) has
r-complexity n− 1, because the support of M is the union of
n − 1 rectangles of the form ({i, i + 1}, ∗) × ({i, i + 1}, ∗).
By the induction hypothesis, P is a good matrix. Therefore,
M is a good matrix (by Lemma 4).

This concludes the proof of Theorem 2: Random variables
are chain independent if and only if their joint probability
matrix is a non-block matrix.

Note that this proof is “constructive” in the following sense.
Assume that the joint probability matrix for α, β is given and
this matrix is not a block matrix. (For simplicity we assume
that matrix elements are rational numbers, though this is not
an important restriction.) Then we can effectively find k such
that α and β are k-independent, and find the joint distribution
of all random variables that appear in the definition of chain
independence. (Probabilities for that distribution are not nec-
essarily rational numbers, but we can provide algorithms that
compute approximations with arbitrary precision.)
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V. IMPROVED VERSION OF THEOREM 1

The inequality

H(γ) ≤ 2kH(γ|α) + 2kH(γ|β)

from Theorem 1 can be improved. In this section we prove a
stronger theorem.

Theorem 3: If random variables α and β are chain inde-
pendent of order k, and γ is an arbitrary random variable,
then

H(γ) ≤ 2kH(γ|α) + 2kH(γ|β)− (2k+1 − 1)H(γ|αβ),

or, in another form,

I(γ : αβ) ≤ 2kI(γ : α|β) + 2kI(γ : β|α).

Proof: The proof is by induction on k.
We use the following inequality:

H(γ) = H(γ|α) +H(γ|β)+

I(α : β)− I(α : β|γ)−H(γ|αβ) ≤
H(γ|α) +H(γ|β) + I(α : β)−H(γ|αβ).

If α and β are independent then I(α : β) = 0, we get the
required inequality.

Assume that α and β are conditionally independent with
respect to α′ and β′; α′ and β′ are chain independent of order
k − 1.

We can assume without loss of generality that two random
variables, the pair (α′, β′), and γ are independent given (α, β).
Indeed, consider random variables (α∗, β∗) defined by the
following formula

Pr(α∗ = c, β∗ = d|α = a, β = b, γ = g) =

Pr(α′ = c, β′ = d|α = a, β = b).

The distribution of (α, β, α∗, β∗) is the same as the distribution
of (α, β, α′, β′), and (α∗, β∗) is independent from γ given
(α, β).

From the “relativized” form of the inequality

H(γ) ≤ H(γ|α) +H(γ|β) + I(α : β)−H(γ|αβ)

(α′ is added as a condition everywhere) it follows that

H(γ|α′) ≤
H(γ|αα′) +H(γ|βα′) + I(α : β|α′)−H(γ|α′αβ) ≤

H(γ|α) +H(γ|β)−H(γ|α′αβ).

Note that according to our assumption α′ and γ are indepen-
dent given α and β, so H(γ|α′αβ) = H(γ|αβ).

Using the upper bound for H(γ|α′), the similar bound for
H(γ|β′) and the induction assumption, we conclude that

H(γ) ≤ 2kH(γ|α) + 2kH(γ|β)

− 2kH(γ|αβ)− (2k − 1)H(γ|α′β′).

Applying the inequality

H(γ|α′β′) ≥ H(γ|α′β′αβ) = H(γ|αβ),

we get the statement of the theorem.

αn βn

f(αn, βn) t(αn, βn) g(αn, βn)

αn βn

r s

f t g

Fig. 1. Values of αn and βn are encoded by functions f , t and g and then
transmitted via channels of limited capacity (dashed lines); decoder functions
r and s have to reconstruct values αn and βn with high probability having
access only to a part of transmitted information.

VI. RATE REGIONS

Definition 7: The rate region of a pair of random variables
α, β is the set of triples of real numbers (u, v, w) such that
for all ε > 0, δ > 0 and sufficiently large n there exist
• “coding” functions t, f and g; their arguments are pairs

(αn, βn); their values are binary strings of length b(u+
δ)nc, b(v + δ)nc and b(w + δ)nc (respectively).

• “decoding” functions r and s such that

r(t(αn, βn), f(αn, βn)) = αn

and
s(t(αn, βn), g(αn, βn)) = βn

with probability more then 1− ε.
This definition (standard for multisource coding theory, see

[3]) corresponds to the scheme of information transmission
presented on Figure 1.

The following theorem was discovered by Vereshchagin. It
gives a new constraint on the rate region when α and β are
chain independent.

Theorem 4: Let α and β be chain independent random
variables of order k. Then,

H(α) +H(β) ≤ v + w + (2− 2−k)u

for any triple (u, v, w) in the rate region.
(It is easy to see that H(α) ≤ u + v since αn can be

reconstructed with high probability from strings of length
approximately nu and nv. For similar reasons we have
H(β) ≤ u+ w. Therefore,

H(α) +H(β) ≤ v + w + 2u

for any α and β. Theorem 4 gives a stronger bound for the
case when α and β are k-independent.)
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Proof: Consider random variables

γ = t(αn, βn), ξ = f(αn, βn), η = g(αn, βn)

from the definition of the rate region (for some fixed ε > 0).
By Theorem 1, we have

H(γ) ≤ 2k(H(γ|αn) +H(γ|βn)).

We can rewrite this inequality as

2−kH(γ) ≤ H((γ, αn)) +H((γ, βn))−H(αn)−H(βn)

or

H(ξ) +H(η) + (2− 2−k)H(γ) ≥ H(ξ) +H(η)+

2H(γ)−H((γ, αn))−H((γ, βn)) +H(αn) +H(βn).

We will prove the following inequality

H(ξ) +H(γ)−H((γ, αn)) ≥ −cεn

for some constant c that does not depend on ε and for
sufficiently large n. Using this inequality and the symmetric
inequality

H(η) +H(γ)−H((γ, βn)) ≥ −cεn

we conclude that

H(ξ) +H(η) + (2− 2−k)H(γ) ≥
≥ H(αn) +H(βn)− 2cεn.

Recall that values of ξ are (v + δ)n-bit strings; therefore
H(ξ) ≤ (v + δ)n. Using similar arguments for η and γ
and recalling that H(αn) = nH(α) and H(βn) = nH(β)
(independence) we conclude that

(v + δ)n+ (w + δ)n+ (2− 2−k)(u+ δ)n ≥
≥ nH(α) + nH(β)− 2cεn.

Dividing over n and recalling that ε and δ may be chosen
arbitrarily small (according to the definition of the rate region),
we get the statement of Theorem 4.

It remains to prove that

H(ξ) +H(γ)−H((γ, αn)) ≥ −cεn

for some c that does not depend on ε and for sufficiently
large n. For that we need the following simple bound:

Lemma 9: Let µ and µ′ be two random variables that
coincide with probability (1− ε) where ε < 1/2. Then

H(µ′) ≤ H(µ) + 1 + ε logm

where m is the number of possible values of µ′.

Proof: Consider a new random variable σ with m + 1
values that is equal to µ′ if µ 6= µ′ and takes a special value
if µ = µ′. We can use at most 1 + ε logm bits on average
to encode σ (logm bits with probability ε, if µ 6= µ′, and
one additional bit to distinguish between the cases µ = µ′

and µ 6= µ′). Therefore, H(σ) ≤ 1 + ε logm. If we know the
values of µ and σ, we can determine the value of µ′, therefore

H(µ′) ≤ H(µ) +H(σ) ≤ H(µ) + 1 + ε logm.

The statement of Lemma 9 remains true if µ′ can be
reconstructed from µ with probability at least (1 − ε) (just
replace µ with a function of µ).

Now recall that the pair (γ, αn) can be reconstructed from ξ
and γ (using the decoding function r) with probability (1−ε).
Therefore, H((γ, αn)) does not exceed H((ξ, γ)) + 1 + cεn
(for some c and large enough n) because both γ and αn have
range of cardinality O(1)n. It remains to note that H((ξ, γ)) ≤
H(ξ) +H(γ).
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