
Near-Optimal Algorithms for Maximum Constraint
Satisfaction Problems

Moses Charikar∗ Konstantin Makarychev∗† Yury Makarychev∗‡

Princeton University

Abstract

In this paper we present approximation algorithms for the maximum constraint
satisfaction problem with k variables in each constraint (MAX k-CSP).

Given a (1−ε) satisfiable 2CSP our first algorithm finds an assignment of variables
satisfying a 1 − O(

√
ε) fraction of all constraints. The best previously known result,

due to Zwick, was 1−O(ε1/3).
The second algorithm finds a ck/2k approximation for the MAX k-CSP problem

(where c > 0.44 is an absolute constant). This result improves the previously best
known algorithm by Hast, which had an approximation guarantee of Ω(k/(2k log k)).

Both results are optimal assuming the Unique Games Conjecture and are based
on rounding natural semidefinite programming relaxations. We also believe that our
algorithms and their analysis are simpler than those previously known.

1 Introduction

In this paper we study the maximum constraint satisfaction problem with k variables in
each constraint (MAX k-CSP): Given a set of boolean variables and constraints, where each
constraint depends on k variables, our goal is to find an assignment so as to maximize the
number of satisfied constraints.

Several instances of 2-CSPs have been well studied in the literature and semidefinite
programming approaches have been very successful for these problems. In their seminal
paper, Goemans and Williamson [5], gave an semidefinite programming based algorithm for
MAX CUT, a special case of MAX 2CSP. If the optimal solution satisfies OPT constraints (in
this problem satisfied constraints are cut edges), their algorithm finds a solution satisfying at
least αGW ·OPT constraints, where αGW ≈ 0.878. Given an almost satisfiable instance (where

∗http://www.cs.princeton.edu/~moses/ Supported by NSF ITR grant CCR-0205594, NSF CAREER
award CCR-0237113, MSPA-MCS award 0528414, and an Alfred P. Sloan Fellowship.

†http://www.cs.princeton.edu/~kmakaryc/ Supported by a Gordon Wu fellowship.
‡http://www.cs.princeton.edu/~ymakaryc/ Supported by a Gordon Wu fellowship.

1

MAX CUT MAX 2CSP

Approximation ratio 0.878 [5] 0.874 [10]
Almost satisfiable instances

• ε > 1/ log n 1−O(
√

ε) [5] 1−O(ε1/3) [17]

• ε < 1/ log n 1−O(
√

ε log n) [1] 1−O(
√

ε log n) [1]

Table 1: Note that the approximation ratios were almost the same for MAX CUT and MAX
2CSP; and in the case of almost satisfiable instances the approximation guarantees were the
same for ε < 1/ log n, but not for ε > 1/ log n.

OPT = 1 − ε), the algorithm finds an assignment of variables that satisfies a (1 − O(
√

ε))
fraction of all constraints.

In the same paper [5], Goemans and Williamson also gave a 0.796 approximation algo-
rithm for MAX DICUT and a 0.758 approximation algorithm for MAX 2SAT. These results
were improved in several follow-up papers: Feige and Goemans [4], Zwick [16], Matuura
and Matsui [11], and Lewin, Livnat and Zwick [10]. The approximation ratios obtained by
Lewin, Livnat and Zwick [10] are 0.874 for MAX DICUT and 0.94 for MAX 2SAT. There
is a simple approximation preserving reduction from MAX 2CSP to MAX DICUT. There-
fore, their algorithm for MAX DICUT can be used for solving MAX 2CSP. Note that their
approximation guarantee for an arbitrary MAX 2CSP almost matches the approximation
guarantee of Goemans and Williamson [5] for MAX CUT.

Khot, Kindler, Mossel, and O’Donnell [9] recently showed that both results of Goemans
and Williamson [5] for MAX CUT are optimal and the results of Lewin, Livnat and Zwick [10]
are almost optimal1 assuming Khot’s Unique Games Conjecture [8]. The MAX 2SAT hard-
ness result was further improved by Austrin [2], who showed that the MAX 2SAT algorithm
of Lewin, Livnat and Zwick [10] is optimal assuming the Unique Games Conjecture.

An interesting gap remained for almost satisfiable instances of MAX 2CSP (i.e. where
OPT = 1 − ε). On the positive side, Zwick [17] developed an approximation algorithm
that satisfies a 1 − O(ε1/3) fraction of all constraints2. However the best known hardness
result [9] (assuming the Unique Games Conjecture) is that it is hard to satisfy 1 − Ω(

√
ε)

fraction of constraints. In this paper, we close the gap by presenting a new approximation
algorithm that satisfies 1−O(

√
ε) fraction of all constraints. Our approximation guarantee

for arbitrary MAX 2CSP matches the guarantee of Goemans and Williamson [5] for MAX
CUT. Table 1 compares the previous best known results for the two problems.

So far, we have discussed MAX k-CSP for k = 2. The problem becomes much harder for
k ≥ 3. In contrast to the k = 2 case, it is NP-hard to find a satisfying assignment for 3CSP.
Moreover, according to H̊astad’s 3-bit PCP Theorem [7], if (1− ε) fraction of all constraints

1Khot, Kindler, Mossel, and O’Donnell [9] proved 0.943 hardness result for MAX 2SAT and 0.878 hardness
result for MAX 2CSP.

2He developed an algorithm for MAX 2SAT, but it is easy to see that in the case of almost satisfiable
instances MAX 2SAT is equivalent to MAX 2CSP (see Section 2.1 for more details).

2

is satisfied in the optimal solution, we cannot find a solution satisfying more than (1/2 + ε)
fraction of constraints.

The approximation factor for MAX k-CSP is of interest in complexity theory since it is
closely tied to the relationship between the completeness and soundness of k-bit PCPs. A
trivial algorithm for k-CSP is to pick a random assignment. It satisfies each constraint with
probability at least 1/2k (except those constraints which cannot be satisfied). Therefore, its
approximation ratio is 1/2k. Trevisan [15] improved on this slightly by giving an algorithm
with approximation ratio 2/2k. Until recently, this was the best approximation ratio for the
problem. Recently, Hast [6] proposed an algorithm with an asymptotically better approx-
imation guarantee Ω

(
k/(2k log k)

)
. Also, Samorodnitsky and Trevisan [14] proved that it

is hard to approximate MAX k-CSP within 2k/2k for every k ≥ 3, and within (k + 1)/2k

for infinitely many k assuming the Unique Games Conjecture of Khot [8]. We close the gap
between the upper and lower bounds for k-CSP by giving an algorithm with approximation
ratio Ω

(
k/2k

)
. By the results of [14], our algorithm is asymptotically optimal within a factor

of approximately 1/0.44 ≈ 2.27 (assuming the Unique Games Conjecture).
In our algorithm, we use the approach of Hast [6]: we first obtain a “preliminary” solution

z1, . . . , zn ∈ {−1, 1} and then independently flip the values of zi using a slightly biased
distribution (i.e. we keep the old value of zi with probability slightly larger than 1/2). In
this paper, we improve and simplify the first step in this scheme. Namely, we present a new
method of finding z1, . . . , zn, based on solving a certain semidefinite program (SDP) and
then rounding the solution to ±1 using the result of Rietz [13] and Nesterov [12]. Note, that
Hast obtains z1, . . . , zn by maximizing a quadratic form (which differs from our SDP) over
the domain {−1, 1} using the algorithm of Charikar and Wirth [3]. The second step of our
algorithm is essentially the same as in Hast’s algorithm.

Our result is also applicable to MAX k-CSP with a larger domain3: it gives a Ω
(
k log d/dk

)
approximation for instances with domain size d.

In Section 2, we describe our algorithm for MAX 2CSP and in Section 3, we describe our
results for MAX k-CSP. Both algorithms are based on exploiting information from solutions
to natural SDP relaxations for the problems.

2 Approximation Algorithm for MAX 2CSP

2.1 SDP Relaxation

In this section we describe the vector program (SDP) for MAX 2CSP/MAX 2SAT. For
convenience we replace each negation x̄i with a new variable x−i that is equal by the definition
to x̄i. First, we transform our problem to a MAX 2SAT formula: we replace

• each constraint of the form xi ∧ xj with two clauses xi and xj;

• each constraint of the form xi ⊕ xj with two clauses xi ∨ xj and x−i ∨ x−j;

3To apply the result to an instance with a larger domain, we just encode each domain value with log d
bits.

3

• finally, each constraint xi with xi ∨ xi.

It is easy to see that the fraction of unsatisfied constraints in the formula is equal, up to
a factor of 2, to the number of unsatisfied constraints in the original MAX 2CSP instance.
Therefore, if we satisfy 1 − O(

√
ε) fraction of all constraints in the 2SAT formula, we will

also satisfy 1 − O(
√

ε) fraction of all constraints in MAX 2CSP. In what follows, we will
consider only 2SAT formulas. To avoid confusion between 2SAT and SDP constraints we
will refer to them as clauses and constraints respectively.

We now rewrite all clauses in the form xi → xj, where i, j ∈ {±1,±2, . . . ,±n}. For
each xi, we introduce a vector variable vi in the SDP. We also define a special unit vector v0

that corresponds to the value 1: in the intended (integral) solution vi = v0, if xi = 1; and
vi = −v0, if xi = 0. The SDP contains the constraints that all vectors are unit vectors; vi

and v−i are opposite; and some `2
2-triangle inequalities.

For each clause xi → xj we add the term

1

8

(
‖vj − vi‖2 − 2〈vj − vi, v0〉

)
to the objective function. In the intended solution this expression equals to 1, if the clause
is not satisfied; and 0, if it is satisfied. Therefore, our SDP is a relaxation of MAX 2SAT
(the objective function measures how many clauses are not satisfied). Note that each term
in the SDP is positive due to the triangle inequality constraints.

We get an SDP relaxation for MAX 2SAT:

minimize
1

8

∑
clauses xi→xj

‖vj − vi‖2 − 2〈vj − vi, v0〉

subject to

‖vj − vi‖2−2〈vj − vi, v0〉 ≥ 0 for all clauses vi → vj

‖vi‖2 = 1 for all i ∈ {0,±1, . . . ,±n}
vi = −v−i for all i ∈ {±1, . . . ,±n}

In a slightly different form, this semidefinite program was introduced by Feige and Goe-
mans [4]. Later, Zwick [17] used this SDP in his algorithm.

2.2 Algorithm and Analysis

The approximation algorithm is shown in Figure 1. We interpret the inner product 〈vi, v0〉 as
the bias towards rounding vi to 1. The algorithm rounds vectors orthogonal to v0 (“unbiased”
vectors) using the random hyperplane technique. If, however, the inner product 〈vi, v0〉 is
positive, the algorithm shifts the random hyperplane; and it is more likely to round vi to 1
than to 0.

4

Figure 1: Approximation Algorithm for MAX 2CSP

1. Solve the SDP for MAX 2SAT. Denote by SDP the objective value of the
solution and by ε the fraction of the constraints “unsatisfied” by the vector
solution, that is,

ε =
SDP

#constraints
.

2. Pick a random Gaussian vector g with independent components distributed as
N (0, 1).

3. For every i,

(a) Project the vector g to vi:

ξi = 〈g, vi〉.

Note, that ξi is a standard normal random variable, since vi is a unit
vector.

(b) Pick a threshold ti as follows:

ti = −〈vi, v0〉
/√

ε .

(c) If ξi ≥ ti, set xi = 1, otherwise set xi = 0.

It is easy to see that the algorithm always obtains a valid assignment to variables: if
xi = 1, then x−i = 0 and vice versa. We will need several facts about normal random
variables. Denote the probability that a standard normal random variable is greater than
t ∈ R by Φ̃(t), in other words

Φ̃(t) ≡ 1− Φ0,1(t) = Φ0,1(−t),

where Φ0,1 is the normal distribution function. The following lemma gives well-known lower
and upper bounds on Φ̃(t).

Lemma 2.1. For every positive t,

t√
2π(t2 + 1)

e−
t2

2 < Φ̃(t) <
1√
2πt

e−
t2

2 .

Proof. Observe, that in the limit t → ∞ all three expressions are equal to 0. Hence the
lemma follows from the following inequality on the derivatives:(

t√
2π(t2 + 1)

e−
t2

2

)′
> − 1√

2π
e−

t2

2 >

(
1√
2πt

e−
t2

2

)′
.

5

Corollary 2.2. There exists a constant C such that for every positive t, the following in-

equality holds Φ̃(t) ≤ C 1√
2π

e−
t2

2 .

A clause xi → xj is not satisfied by the algorithm if ξi ≥ ti and ξj ≤ tj (i.e. xi is set to
1; and xj is set to 0). The following lemma bounds the probability of this event.

Lemma 2.3. Let ξi and ξj be two standard normal random variables with covariance 1−2∆2

(where ∆ ≥ 0). For all real numbers ti, tj and δ = (tj − ti)/2 we have (for some absolute
constant C)

1. If tj ≤ ti,
Pr (ξi ≥ ti and ξj ≤ tj) ≤ C min(∆2/|δ|, ∆).

2. If tj ≥ ti,
Pr (ξi ≥ ti and ξj ≤ tj) ≤ C(∆ + 2δ).

Proof. 1. First note that if ∆ = 0, then the above inequality holds, since ξi = ξj almost
surely. If ∆ ≥ 1/2, then the right hand side of the inequality becomes Ω(1)×min(1/|δ|, 1).
Since max(ti,−tj) ≥ |δ|/2, the inequality follows from the bound Φ̃(|δ|/2) ≤ O(1/|δ|). So
we assume 0 < ∆ < 1/2.

Let ξ = (ξi + ξj)/2 and η = (ξi − ξj)/2. Notice that Var [ξ] = 1−∆2, Var [η] = ∆2; and
random variables ξ and η are independent. We estimate the desired probability as follows:

Pr (ξj ≤ tj and ξi ≥ ti) = Pr

(
η ≥

∣∣∣∣ξ − ti + tj
2

∣∣∣∣+ ti − tj
2

)

=

+∞∫
−∞

Pr

(
η ≥

∣∣∣∣ξ − ti + tj
2

∣∣∣∣+ ti − tj
2

| ξ = t

)
dFξ(t).

Note that the density of the normal distribution with variance 1 − ∆2 is always less than
1/
√

2π(1−∆2) < 1, thus we can replace dFξ(t) with dt.

Pr(ξj ≤ tj and ξi ≥ ti) ≤
∫ +∞

−∞
Φ̃

∣∣∣t− ti+tj

2

∣∣∣+ ti−tj
2

∆

 dt

=

∫ +∞

−∞
Φ̃

(
|t|+ |δ|

∆

)
dt

= ∆

∫ +∞

−∞
Φ̃ (|s|+ |δ| /∆) ds (by Corollary 2.2)

≤ C ′∆ · 1√
2π

∫ +∞

−∞
e−

(|s|+|δ|/∆)2

2 ds

= 2C ′∆ · Φ̃(|δ| /∆) (by Lemma 2.1)

≤ 2C ′min(∆2 /|δ| , ∆).

6

2. We have

Pr (ξj ≤ tj and ξi ≥ ti) ≤ Pr (ξj ≤ tj and ξi ≥ tj) + Pr (ti ≤ ξi ≤ tj)

≤ C(∆ + 2δ).

For estimating the probability Pr (ξj ≤ tj and ξi ≥ tj) we used part 1 with ti = tj.

Theorem 2.4. The approximation algorithm finds an assignment satisfying a 1 − O(
√

ε)
fraction of all constraints, if a 1 − ε fraction of all constraints is satisfied in the optimal
solution.

Proof. We shall estimate the probability of satisfying a clause xi → xj. Set ∆ij = ‖vj−vi‖/2
(so that cov(ξi, ξj) = 〈vi, vj〉 = 1 − 2∆2

ij) and δij = (tj − ti)/2 ≡ −〈vj − vi, v0〉/(2
√

ε). The
contribution of the term to the SDP is equal to cij = (∆2

ij + δij

√
ε)/2.

Consider the following cases (we use Lemma 2.3 in all of them):

1. If δij ≥ 0, then the probability that the clause is not satisfied (i.e. ξi ≥ ti and xj ≤ tj)
is at most

C(∆ij + 2δij) ≤ C(
√

2cij + 4cij/
√

ε).

2. If δij < 0 and ∆2
ij ≤ 4cij, then the probability that the clause is not satisfied is at most

C∆ij ≤ 2C
√

cij.

3. If δij < 0 and ∆2
ij > 4cij, then the probability that the constraint is not satisfied is at

most

C∆2
ij

|δij|
=

C∆2
ij

(∆2
ij − 2cij)/

√
ε
≤

C
√

ε ∆2
ij

∆2
ij −∆2

ij/2
= 2C

√
ε.

Combining these cases we get that the probability that the clause is not satisfied is at most

4C(
√

cij + cij/
√

ε +
√

ε).

The expected fraction of unsatisfied clauses is equal to the average of such probabilities
over all clauses. Recall, that ε is equal, by the definition, to the average value of cij.
Therefore, the expected number of unsatisfied constraints is O(

√
ε + ε/

√
ε +

√
ε) (here we

used Jensen’s inequality for the function
√
·).

3 Approximation Algorithm for MAX k-CSP

3.1 Reduction to Max k-AllEqual

We use Hast’s reduction of the MAX k-CSP problem to the Max k-AllEqual problem.

7

Definition 3.1 (Max k-AllEqual Problem). Given a set S of clauses of the form l1 ≡ l2 ≡
· · · ≡ lk, where each literal li is either a boolean variable xj or its negation x̄j. The goal is
to find an assignment to the variables xi so as to maximize the number of satisfied clauses.

The reduction works as follows. First, we write each constraint f(xi1 , xi2 , . . . , xik) as a
CNF formula. Then we consider each clause in the CNF formula as a separate constraint;
we get an instance of the MAX k-CSP problem, where each clause is a conjunction. The new
problem is equivalent to the original problem: each assignment satisfies exactly the same
number of clauses in the new problem as in the original problem. Finally, we replace each
conjunction l1 ∧ l2 ∧ . . . ∧ lk with the constraint l1 ≡ l2 ≡ · · · ≡ lk. Clearly, the value of this
instance of Max k-AllEqual is at least the value of the original problem. Moreover, it is at
most two times greater then the value of the original problem: if an assignment {xi} satisfies
a constraint in the new problem, then either the assignment {xi} or the assignment {x̄i}
satisfies the corresponding constraint in the original problem. Therefore, a ρ approximation
guarantee for Max k-AllEqual translates to a ρ/2 approximation guarantee for the MAX
k-CSP.

Note that this reduction may increase the number of constraints by a factor of O(2k).
However, our approximation algorithm gives a nontrivial approximation only when k/2k ≥
1/m where m is the number of constraints, that is, when 2k ≤ O(m log m) is polynomial in
m.

Below we consider only the Max k-AllEqual problem.

3.2 SDP Relaxation

For brevity, we denote x̄i by x−i. We think of each clause C as a set of indices: the clause
C defines the constraint “(for all i ∈ C, xi is true) or (for all i ∈ C, xi is false)”. Without
loss of generality we assume that there are no unsatisfiable clauses in S, i.e. there are no
clauses that have both literals xi and x̄i.

We consider the following SDP relaxation of Max k-AllEqual problem:

maximize
1

k2

∑
C∈S

∥∥∥∥∥∑
i∈C

vi

∥∥∥∥∥
2

subject to

‖vi‖2 = 1 for all i ∈ {±1, . . . ,±n}
vi = −v−i for all i ∈ {±1, . . . ,±n}

This is indeed a relaxation of the problem: in the intended solution vi = v0 if xi is true, and
vi = −v0 if xi is false (where v0 is a fixed unit vector). Then each satisfied clause contributes
1 to the SDP value. Hence the value of the SDP is greater than or equal to the value of the
Max k-AllEqual problem. We use the following theorem of Rietz [13] and Nesterov [12].

8

Theorem 3.2 (Rietz [13], Nesterov [12]). There exists an efficient algorithm that given a
positive semidefinite matrix A = (aij), and a set of unit vectors vi, assigns ±1 to variables
zi, s.t. ∑

i,j

aij zizj ≥
2

π

∑
i,j

aij 〈vi, vj〉. (1)

Remark 3.3. Rietz proved that for every positive semidefinite matrix A and unit vectors
vi there exist zi ∈ {±1} s.t. inequality (1) holds. Nesterov presented a polynomial time
algorithm that finds such values of zi.

Observe that the quadratic form

1

k2

∑
C∈S

(∑
i∈C

zi

)2

is positive semidefinite. Therefore we can use the algorithm from Theorem 3.2. Given vectors
vi as in the SDP relaxation, it yields numbers zi s.t.

1

k2

∑
C∈S

(∑
i∈C

zi

)2

≥ 2

π

1

k2

∑
C∈S

∥∥∥∥∥∑
i∈C

vi

∥∥∥∥∥
2

zi ∈ {±1}
zi = −z−i

(Formally, v−i is a shortcut for −vi; z−i is a shortcut for −zi).
In what follows, we assume that k ≥ 3 — for k = 2 we can use the MAX CUT algorithm

by Goemans and Williamson [5] to get a better approximation4.
The approximation algorithm is shown in Figure 2.

3.3 Analysis

Theorem 3.4. The approximation algorithm finds an assignment satisfying at least ck/2k ·
OPT clauses (where c > 0.88 is an absolute constant), given that OPT clauses are satisfied
in the optimal solution.

Proof. Denote ZC = 1
k

∑
i∈C zi. Then Theorem 3.2 guarantees that

∑
C∈S

Z2
C =

1

k2

∑
C∈S

(∑
i∈C

zi

)2

≥ 2

π

1

k2

∑
C∈S

∥∥∥∥∥∑
i∈C

vi

∥∥∥∥∥
2

=
2

π
SDP ≥ 2

π
OPT,

where SDP is the SDP value.

4Our algorithm works for k = 2 with a slight modification: δ should be less than 1.

9

Figure 2: Approximation Algorithm for the Max k-AllEqual Problem

1. Solve the semidefinite relaxation for Max k-AllEqual. Get vectors vi.

2. Apply Theorem 3.2 to vectors vi as described above. Get values zi.

3. Let δ =

√
2

k
.

4. For each i ≥ 1 assign (independently)

xi =

{
true, with probability 1+δzi

2
;

false, with probability 1−δzi

2
.

Note that the number of zi equal to 1 is 1+ZC

2
k, the number of zi equal to −1 is 1−ZC

2
k.

The probability that a constraint C is satisfied equals

Pr(C is satisfied) = Pr (∀i ∈ C xi = 1) + Pr (∀i ∈ C xi = −1)

=
∏
i∈C

1 + δzi

2
+
∏
i∈C

1− δzi

2

=
1

2k

(
(1 + δ)(1+ZC)k/2 · (1− δ)(1−ZC)k/2 + (1− δ)(1+ZC)k/2 · (1 + δ)(1−ZC)k/2

)
=

(1− δ2)k/2

2k

((
1 + δ

1− δ

)ZCk/2

+

(
1− δ

1 + δ

)ZCk/2
)

=
1

2k
(1− δ2)k/2 · 2 cosh

(
1

2
ln

1 + δ

1− δ
· ZCk

)
.

Here, cosh t ≡ (et + e−t)/2. Let α be the minimum of the function cosh t/t2. Numerical
computations show that α > 0.93945. We have,

cosh

(
1

2
ln

1 + δ

1− δ
· ZCk

)
≥ α

(
1

2
ln

1 + δ

1− δ
· ZCk

)2

≥ α (δ · ZCk)2 = 2αZ2
Ck.

Recall that δ =
√

2/k and k ≥ 3. Hence

(1− δ2)k/2 =

(
1− 2

k

)k/2

≥
(

1− 2

k

)
· 1

e
.

Combining these bounds we get,

Pr (C is satisfied) ≥ 4α

e
· k

2k
·
(

1− 2

k

)
· Z2

C .

10

However, a more careful analysis shows that the factor 1 − 2/k is not necessary, and the
following bound holds (we give a proof in the Appendix):

2α(1− δ2)k/2

(
1

2
ln

1 + δ

1− δ
· ZCk

)2

≥ 4α

e
Z2

Ck. (2)

Therefore,

Pr (C is satisfied) ≥ 4α

e
· k

2k
· Z2

C .

So the expected number of satisfied clauses is∑
C∈S

Pr (C is satisfied) ≥ 4α

e

k

2k

∑
C∈S

Z2
C ≥ 4α

e

k

2k
· 2

π
OPT.

We conclude that the algorithm finds an

8α

πe

k

2k
> 0.88

k

2k

approximation with high probability.

Acknowledgment

We thank Noga Alon for pointing out that a non-algorithmic version of the result of Nes-
terov [12] was proved by Rietz [13].

References

[1] A. Agarwal, M. Charikar, K. Makarychev, and Y. Makarychev. O(
√

log n) approxi-
mation algorithms for Min UnCut, Min 2CNF Deletion, and directed cut problems. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 573–
581, 2005.

[2] P. Austrin Balanced Max 2-Sat might not be the hardest. ECCC Report TR06-088,
2006.

[3] M. Charikar and A. Wirth, Maximizing quadratic programs: extending Grothendieck’s
Inequality. In Proceedings of the 45th Annual IEEE Symposium on Foundations of
Computer Science, pp. 54–60, 2004.

[4] U. Feige and M. Goemans. Approximating the value of two prover proof systems, with
applications to MAX 2SAT and MAX DICUT. In Proceedings of the 3rd IEEE Israel
Symposium on the Theory of Computing and Systems, pp. 182–189, 1995.

11

[5] M. Goemans and D. Williamson. Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. Journal of the ACM,
vol. 42, no. 6, pp. 1115–1145, Nov. 1995.

[6] G. Hast. Approximating Max kCSP — Outperforming a Random Assignment with
Almost a Linear Factor. In Proceedings of the 32nd International Colloquium on
Automata, Languages and Programming, pp. 956–968, 2005.

[7] J. H̊astad. Some optimal inapproximability results. Journal of the ACM, vol. 48, no.
4, pp. 798-859, 2001.

[8] S. Khot. On the power of unique 2-prover 1-round games. In Proceedings of the 34th
ACM Symposium on Theory of Computing, pp. 767–775, 2002.

[9] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapproximability re-
sults for MAX-CUT and other two-variable CSPs? In Proceedings of the 45th IEEE
Symposium on Foundations of Computer Science, pp. 146–154, 2004.

[10] M. Lewin, D. Livnat, and U. Zwick. Improved Rounding Techniques for the MAX
2-SAT and MAX DI-CUT Problems. In Proceedings of the 9th International IPCO
Conference on Integer Programming and Combinatorial Optimization, pp. 67–82,
2002.

[11] S. Matuura and T. Matsui. New approximation algorithms for MAX 2SAT and MAX
DICUT, Journal of Operations Research Society of Japan, vol. 46, pp. 178–188, 2003.

[12] Y. Nesterov. Quality of semidefinite relaxation for nonconvex quadratic optimization.
CORE Discussion Paper 9719, March 1997.

[13] E. Rietz. A proof of the Grothendieck inequality, Israel J. Math, vol. 19, pp. 271–276,
1974.

[14] A. Samorodnitsky and L. Trevisan. Gowers Uniformity, Influence of Variables, and
PCPs. In Proceedings of the 38th ACM symposium on Theory of computing, pp. 11–
20, 2006.

[15] L. Trevisan. Parallel Approximation Algorithms by Positive Linear Programming. Al-
gorithmica, vol. 21, no. 1, pp. 72-88, 1998.

[16] U. Zwick. Analyzing the MAX 2-SAT and MAX DI-CUT approxi-
mation algorithms of Feige and Goemans. Manuscript. Available at
www.cs.tau.ac.il/~zwick/my-online-papers.html.

[17] U. Zwick. Finding almost satisfying assignments. In Proceedings of the 30th Annual
ACM Symposium on Theory of Computing, pp. 551–560, 1998.

12

A Proof of Inequality (2)

In this section, we will prove inequality (2):

2α(1− δ2)k/2

(
1

2
ln

1 + δ

1− δ
· ZCk

)2

≥ 4α

e
Z2

Ck. (2)

Let us first simplify this expression

(1− δ2)k/2

(√
k

2
· ln(1 + δ)− ln(1− δ)

2

)2

≥ e−1.

Note that this inequality holds for 3 ≤ k ≤ 7, which can be verified by direct computation.
So assume that k ≥ 8. Denote t = 2/k; and replace k with 2/t and δ with

√
t. We get

(1− t)1/t

(
1√
t
· ln(1 +

√
t)− ln(1−

√
t)

2

)2

≥ e−1.

Take the logarithm of both sides:

ln(1− t)

t
+ 2 ln

(
1√
t
· ln(1 +

√
t)− ln(1−

√
t)

2

)
≥ −1.

Observe that

1√
t
· ln(1 +

√
t)− ln(1−

√
t)

2
= 1 +

t

3
+

t2

5
+

t3

7
+ · · · ≥ 1 +

t

3
;

and

ln(1− t)

t
= −1− t

2
− t2

3
− · · · ≥ −1− t

2
− t2

3
×

∞∑
i=0

ti

≥ −1− t

2
− 4t2

9
.

In the last inequality we used our assumption that t ≡ 2/k ≤ 1/4 . Now,

ln(1− t)

t
+ 2 ln

(
1√
t
· ln(1 +

√
t)− ln(1−

√
t)

2

)
≥

(
−1− t

2
− 4t2

9

)
+ 2 ln

(
1 +

t

3

)
≥

(
−1− t

2
− 4t2

9

)
+ 2

(
t

3
− t2

18

)
≥ −1 +

t

6
− 5t2

9
≥ −1.

Here (t/6− 5t2/9) is positive, since t ∈ (0, 1/4]. This concludes the proof.

13

