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Abstract

We study the following quadratic optimization problem.

MAX QP: Given a real matrix aij, maximize the quadratic form

∑
ij

aij · xixj,

where variables xi take values ±1.

We show that the integrality gap of the natural SDP relaxation depends on

the structure of the support of the matrix A. We define a new graph parameter,

the Grothendieck constant of a graph G = (V,E), to be the worst integrality gap

among matrices A with support restricted to the edges of G (i.e. we require that if

(i, j) /∈ E, then aij = 0).

We give upper and lower estimates for the Grothendieck constant of the graph G:

We show that it is less than O(log ϑ(Ḡ)), where ϑ(Ḡ) is the Lovász theta function

of the complement of G, which is always smaller than the chromatic number of

G. This yields an efficient constant factor approximation algorithm for the above

maximization problem for a wide range of graphs G.

We prove that the Grothendieck constant is always at least C logw(G), where

w(G) is the clique number of G. In particular it follows that the maximum possible

integrality gap for the complete graph on n vertices is C log n.

We present approximation algorithms for the MAX k-CSP and Advantage

over Random for Maximum Acyclic Subgraph problems. These algorithms

solve the MAX QP problem at an intermediate step and then use the obtained

solution to solve more complex combinatorial problems.
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Chapter 1

Preface

In this dissertation, we study the following quadratic optimization problem:

MAX QP: Given a real n× n matrix A = (aij) maximize the quadratic form

〈x,Ax〉 ≡
∑
ij

aij · xixj, (1.1)

where variables xi take values ±1.

The problem naturally arises in the design of approximation algorithms for sev-

eral combinatorial optimization problems. In these problems the objective function

is or can be approximated by a second degree polynomial. Though MAX QP is

NP-hard, it can be approximately solved in polynomial time with a reasonable

(constant or logarithmic) approximation guarantee.

The problem has been studied in the literature for different families of matri-

ces A. Charikar and Wirth [18], Megretski [48] and Nemirovski, Roos and Ter-

laky [49] gave Ω(log n)-approximation algorithms for arbitrary matrices A with ze-

ros on the diagonal1. Alon and Naor [7] presented a constant factor approximation

1We explain why this condition is necessary in Chapter 2.

1



algorithm for the bilinear case of MAX QP (see Chapter 2 for details), which they

used to obtain a constant factor approximation for the cut norm. Finally, Nes-

terov [50] found a constant factor approximation algorithm for positive semidefinite

matrices.

We prove that in general the log n approximation factor is optimal for algorithms

based on semidefinite programming (the technique used in all the algorithms above).

However, we show that in many cases — when the matrix A has a special form — we

can get a much better approximation ratio. LetG be the graph on vertices {1, . . . , n}
corresponding to the support of matrix A: that is, (i, j) ∈ E, if aij 6= 0 and

(i, j) /∈ E, if aij = 0. We give an algorithm that finds an O(log ϑ(Ḡ)) approximation,

where ϑ(Ḡ) is the Lovász theta function. Let us note that the graph G often has a

natural interpretation in terms of the original combinatorial optimization problem

(that is reduced to MAX QP) and its support has a special structure (which may

be known in advance). Therefore, in many applications, our algorithm performs

considerably better than the general algorithm (e.g. see discussion of the Correlation

Clustering Problem in the next section).

In the second part of the dissertation, we give new approximation algorithms for

the Maximum Constraint Satisfaction Problem and the Maximum Acyclic Subgraph

problem; both algorithms use quadratic integer optimization.
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1.1 Algorithmic Applications

We now describe some applications of MAX QP.

Spin glass model. The first application arises in the study of the spin glass model

in mathematical physics. In this model, there is a system of atoms each of which

has a spin that can point either up or down. Some of the pairs of atoms have

non-negligible interactions. The system can be described by a graph G = (V,E),

with a (not necessarily positive) weight (aij) for each edge (i, j) ∈ E. The atoms

are the vertices, the spin of the atom i is xi ∈ {−1, 1}, where 1 represents the “up”

position, the weights (aij) represent the interactions between i and j, and the energy

of the system is given by its Hamiltonian H = −∑(i,j)∈E aijxixj. A ground state is

a state that minimizes the energy, and thus the problem of finding a ground state

is precisely that of finding the maximum of the integer program (1.1).

It is known that if the graph G is planar, one can find a ground set in polynomial

time using matching algorithms (see Barahona [13]), but in general this problem is

NP-hard (and in fact even hard to approximate). Our technique here thus supplies

an efficient way to find a configuration that approximates the minimum energy, and

in many cases this approximation is up to a constant factor.

Correlation clustering. Typical clustering problems involve the partitioning of a

data set into classes which are small in some quantitative (typically metric) sense. In

contrast, in correlation clustering, first considered by Bansal, Blum and Chawla [12]

(and referred to as clustering with qualitative information in Charikar, Guruswami

and Wirth [15]), we are given a judgment graph G = (V,E) and for every (i, j) ∈ E
a real number aij which is interpreted as a judgment of the similarity of i and j. In

the simplest case aij ∈ {1,−1}, where if aij = 1 then i and j are said to be similar,
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and if aij = −1 then i and j are said to be dissimilar. Given a partition of V into

clusters, a pair is called an agreement if it is a similar pair within one cluster or a

dissimilar pair across two distinct clusters. Analogously, a disagreement is a similar

pair across two different clusters or a dissimilar pair in one cluster. In the maximum

correlation problem the goal is to partition V so that the correlation is maximized,

where the correlation of a partition is the difference of the number of agreements

and the number of disagreements. In the case of arbitrary weights, for a partition

P of V into pairwise disjoint clusters, the value of the partition is the sum of all aij

for i, j that lie in the same cluster, minus the sum of all entries aij for i and j that

lie in distinct clusters.

Charikar and Wirth [18] showed that the general problem can be reduced to the

problem of partitioning of V into two clusters. This problem, in turn, is equivalent

to MAX QP: the correlation of a partition P equals

∑
(i,j)∈E

aijxixj,

where xi = 1, if the vertex i is in the first cluster; and xi = −1, if i is in the second

cluster.

Charikar and Wirth [18] developed O(log n) approximation algorithm for the

maximum correlation clustering problem when the judgment graph is the com-

plete graph on n vertices. Our results improve the approximation guarantee to

O(log(ϑ(G))). In particular, this is O(1) for any bounded degree graph or any

graph with a bounded chromatic number or genus — in all these cases and some

additional ones considered in Section 2.8 no constant factor approximation algo-

rithm was previously known.
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Maximum Constraint Satisfaction Problem. In the MAX k-CSP problem we

are given a set of boolean variables and constraints, where each constraint depends

on k variables, the goal is to find an assignment that maximizes the number of sat-

isfied constraints. The motivation for studying this problem comes from complexity

theory (see Chapter 3). We give Ω(2k/k) approximation algorithm for MAX k-CSP

problem. Our result implies that the ratio between the completeness and soundness

parameters of any k-query PCP for SAT is at most 2k/k. This bound matches (up

to a constant factor) the lower bound on this ratio obtained by Samorodnitsky and

Trevisan [56] assuming the Unique Games Conjecture.

Our algorithm for MAX k-CSP uses integer quadratic programming. However,

the connection between the MAX k-CSP problem and the MAX QP problem is

significantly more complex than in the previous two examples. We describe the

algorithm in Chapter 3.

Maximum Acyclic Subgraph. The Maximum Acyclic Subgraph problem

is a classical linear arrangement problem: Given a directed graph on n vertices,

arrange the vertices on a line, so as to maximize the number of edges going forward.

It is easy to obtain a 2 approximation for this problem: if we randomly permute

all vertices, then half of all edges on average will go forward. It is a long standing

open question, however, whether it is possible to find a 2− Ω(1) approximation.

We develop a new algorithm for this problem. It has the following performance

guarantee: if in the optimal solution (1/2 + δ) fraction of all edges go forward,

the algorithm returns a solution where (1/2 + Ω(δ/ log n)) fraction of all edges go

forward. Its approximation ratio is still 2 − o(1), but its approximation guarantee

is better than the approximation guarantee of known algorithms for a wide range

of parameters.
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Our algorithm is based on a new approach: we first partition the graph into

several pieces (in a special way), then permute the vertices in each of them randomly

and output the concatenation of the pieces. In order to find the partitioning, the

algorithm solves a certain MAX QP problem and obtains probabilities with which

each vertex should belong to each part. We describe the algorithm and quadratic

relaxation in detail in Chapter 4.
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1.2 Prior publications

Most of the dissertation was previously published in refereed conferences and jour-

nals.

• Chapter 1 is based on the paper

N. Alon, K. Makarychev, Y. Makarychev, A. Naor. Quadratic

Forms on Graphs. In Inventiones Mathematicae, vol. 163, no. 3,

pp. 499–522, March 2006. Conference version in the 37th ACM

STOC, pp. 486–493, 2005.

However, some of the proofs we present in the dissertation were slightly sim-

plified.

• Chapter 2 is based on the paper

M. Charikar, K. Makarychev, and Y. Makarychev. Near-Optimal

Algorithms for Maximum Constraint Satisfaction Problems. In Pro-

ceedings of the 18th ACM-SIAM SODA, pp. 62–68, 2007

• Chapter 3 is based on the paper

M. Charikar, K. Makarychev, and Y. Makarychev. On the Advan-

tage over Random for Maximum Acyclic Subgraph. Proceedings of

48th IEEE FOCS, pp. 625–633, 2007.
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Chapter 2

Quadratic Forms on Graphs

2.1 Introduction

In this chapter we study approximation algorithms for the following optimization

problem.

MAX QP: Given a real n× n matrix A = (aij) maximize the quadratic form

n∑
i,j=1

aij · xixj, (2.1)

where variables xi take values ±1.

A natural approach to solving the problem is using Semidefinite Programming

(SDP): we replace all variables xi with unit vectors zi in the n-dimensional space.

The obtained relaxation

max
∑
i,j

aij · 〈zi, zj〉 (2.2)

subject to zi ∈ Sn−1 for all i, can be solved efficiently (i.e., in polynomial time)

using Semidefinite Programming. However, the new problem is not equivalent to
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the original one. So the main questions is how well the solution to the SDP (SDP

value) approximates the original solution (OPT value). The integrality gap GAPA

is the ratio between the SDP value and the OPT value:

GAPA =
maxzi∈Sn−1

∑
i,j aij · 〈zi, zj〉

maxxi∈{±1}
∑

i,j aij · xixj
.

Note that since in the new problem the constraints on the variables are relaxed

(variables xi are unit vectors in one dimensional space; variables zi are unit vectors

in the n dimensional space) SDP ≥ OPT and GAPA ≥ 1.

This relaxation has been studied before for several families of matrices A. Ri-

etz [55] and Nesterov [50] showed that the integrality gap is at most π/2 for positive

semidefinite matrices. Charikar and Wirth [18], Megretski [48] and Nemirovski,

Roos and Terlaky [49] proved O(log n) bound on the integrality gap of arbitrary

matrices with zeros on the diagonal (where n is the size of the matrix). Kashin and

Szarek [36] showed that the integrality gap is at least Ω(
√

log n) for such matrices.

Alon and Naor [7] observed that Grothendieck’s inequality [24] implies that the in-

tegrality gap is a constant in the bilinear version of MAX QP i.e. when the matrix

A has the form

A =

 0 B

BT 0

 . (2.3)

Grothendieck’s inequality [24] states that for every n×m matrix (bij) and every

choice of unit vectors u1, . . . , un, v1, . . . , vm ∈ Sn+m−1 there exist a choice of signs

x1, . . . , xn, y1, . . . , ym ∈ {−1,+1} for which

n∑
i=1

m∑
j=1

bij〈ui, vj〉 ≤ KG

n∑
i=1

m∑
j=1

bijxiyj. (2.4)
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Here KG is an absolute constant, which is called the Grothendieck constant. The

best value of KG (which is unknown1) is exactly equal to the worst integrality gap

GAPA for matrices of the form (2.3).

In this chapter we generalize the Grothendieck inequality to matrices with a

fixed support. We suppose that (aij) are weights on edges of a fixed graph G and

investigate the dependence between the gap GAPA and the graph G.

Let us now give a formal definition.

Definition 2.1. Let G = (V,E) be a graph on the vertices {1, . . . , n}. Denote by

AG the family of all n× n matrices A = (aij) such that aij = 0, if (i, j) /∈ E.

Throughout the chapter we assume that the graphG is on the vertices {1, . . . , n}.

Definition 2.2. The Grothendieck constant of the graph G, denoted by K(G), is

the maximum integrality gap GAPA among matrices A in AG.

Note that bipartite graphs correspond to matrices of the form (2.3); and complete

graphs (without loops) correspond to matrices with zeros on the diagonal. Hence,

K(G) ≤ KG for bipartite graphs; and K(Kn) = O(log n) for the complete graph

Kn on n vertices. We show that there is a natural way to interpolate between these

two cases: namely, for every loop-free graph G,

K(G) = O(log ϑ(G)),

where ϑ(G) is the Lovász theta function of the complement of G, denoted G. The

theta function of a graph on the vertices {1, . . . , n}, defined in [45], is the minimum

1The best known upper bound due to Krivine [41] is KG ≤ π/[2 log(1 +
√

2)] = 1.782...
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of

max
1≤i≤n

1

〈zi, e〉2 ,

where the minimum is taken over all choices of unit vectors zi and e such that zi

and zj are orthogonal for every pair of non-adjacent vertices i and j. Our proof is

algorithmic, and provides an efficient randomized algorithm that approximates the

maximum possible value of a given quadratic form.

We also show that the integrality gap of O(log n) for arbitrary n × n matrices

with zeros on the diagonal is in fact optimal. This implies that for the complete

graph Kn,

K(Kn) ≥ Ω(log n);

and for arbitrary graph G,

K(G) ≥ Ω(logω(G)),

where ω(G) is the clique number of G. Our construction is based on a refinement

of a recent result of Kashin and Szarek [36], who established an Ω(
√

log n) lower

bound.

2.2 Our results

To summarize the main results of this chapter are the following theorems.

Theorem 2.3. There exists an absolute positive constant C such that for every

(loop-free) graph G,

K(G) ≤ C log ϑ(Ḡ),
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where ϑ(Ḡ) is the Lovász theta function of the complement of G.

Theorem 2.4. There exists an absolute positive constant C such that for every

(loop-free) graph G,

K(G) ≥ C logω(G),

where ω(G) is the clique number of the graph G.

Remark 2.5. Note that we are interested only in the case of simple graphs (i.e.

graphs without loops). If G has loops, then K(G) is equal to infinity, unless G is

a forest. That is, there exists a matrix A in AG such that (2.2) is positive, but

(2.1) is negative or zero. Consider an example. The graph G contains a cycle

1→ 2→ · · · → m→ 1 and a loop l → l. Then the following quadratic form in AG
is non-negative for x1, . . . , xn ∈ {−1, 1}:

m−1∑
i=1

xixi+1 − x1xm − (m− 2)(x`)
2,

since (x1x2 + · · ·+ xm−1xm)− x1xm ≤ m− 2 and (m− 2)(x`)
2 = m− 2. However,

if z1, . . . , zm are vectors on the plain such that the angle between zi and zi+1 is π/m

for all i; the angle between z1 and zm is π − π/m, then

m∑
i=1

〈zi, zi+1〉 − 〈x1, xm〉 − (m− 2)‖zl‖2 = m cos(π/m)− (m− 2) > 0.

12



z1

z2

z3z4

z5

Finally, note that if G is a forest, then trivially K(G) = 1.

2.3 Basic Facts

Observation 2.6. For every n × n matrix A = (aij) with non-negative entries on

the diagonal

max
xi∈[−1,1]

∑
i,j

aij · xixj = max
xi∈{−1,+1}

∑
i,j

aij · xixj;

max
‖zi‖2≤1

∑
i,j

aij · 〈zi, zj〉 = max
‖zi‖2=1

∑
i,j

aij · 〈zi, zj〉.

Proof. Since the diagonal entries are non-negative, the quadratic form is convex in

each variable and thus its maximum is attained at the boundary.

An immediate consequence of this observation is that if the diagonal entries of

A are non-positive, then the integrality gap GAPA is equal to

GAP ′A =
max‖zi‖2≤1

∑
i,j aij · 〈zi, zj〉

max|xi|≤1

∑
i,j aij · 〈xi, xj〉

.

13



It will be often more convenient for us, to search for an approximate solution among

xi ∈ [−1, 1]. Then we can sequentially round each xi to −1 or 1 without decreasing

the value of the objective function. We shall also consider a slightly modified SDP

relaxation which is equivalent to (2.2) if the diagonal entries of A are non-negative:

max
‖zi‖2≤1

∑
i,j

aij · 〈zi, zj〉. (2.2′)

2.4 Dual Problem

In this section, we introduce a parameter of the graph G dual to K(G) and prove

its basic properties. We need the following standard definitions. Denote by µ the

Lebesgue measure on R. Let f be a measurable function from [0, 1] to R. Then

‖f‖∞ is the (essential) supremum of |f | (in other words, µ {t : |f(t)| > ‖f‖∞} = 0,

but for every positive ε, µ {t : |f(t)| ≥ ‖f‖∞ − ε} > 0.). The class L∞[0, 1] is the

class of all (essentially) bounded functions on the segment [0, 1] i.e. functions with

finite ‖ · ‖∞ norm. Finally, the inner product between two functions f and g is

defined as

〈f, g〉 ≡
∫ 1

0

f(t)g(t)dt;

and the ‖ · ‖2 norm of f is

‖f‖2 =
√
〈f, f〉 ≡

√∫ 1

0

f(t)2dt.

Definition 2.7 (The Gram representation constant ofG). Let G = (V,E) be a graph

on n vertices. Denote by R(G) the minimum R ∈ R such that for every sequence

of unit vectors z1, . . . , zn ∈ Sn−1 there exists a sequence of functions f1, . . . , fn in

14



L∞[0, 1] such that

• for every i ∈ V we have ‖fi‖∞ ≤ R; and

• for every (i, j) ∈ E,

〈zi, zj〉 = 〈fi, fj〉 ≡
∫ 1

0

fi(t)fj(t)dt.

Our goal is to show that R(G)2 = K(G) for graphs without loops. For clarity of

presentation we will split the proof in two parts. First using a probabilistic argument

we will prove that K(G) ≤ R(G)2. Then we will define the Gram representation

constant in terms of Gram matrices and show that certain sets of Gram matrices are

convex. This will allow us to use a duality argument to prove that K(G) ≥ R(G)2.

Theorem 2.8. For every (loop-free) graph G,

K(G) = R(G)2.

Lemma 2.9. For every (loop-free) graph G, K(G) ≤ R(G)2.

Proof. Fix a n × n matrix A in AG. Let z1, . . . , zn be a sequence of unit vectors

that maximizes the quadratic form

∑
(i,j)

aij · 〈zi, zj〉 =
∑

(i,j)∈E

aij · 〈zi, zj〉.

By the definition of R(G) there exists a sequence of functions such that 〈fi, fj〉 =

15



〈zi, zj〉 for all (i, j) ∈ E and |fi(t)| ≤ R(G) for all i and t ∈ [0, 1]. Observe that

∑
(i,j)∈E

aij · 〈zi, zj〉 =
∑

(i,j)∈E

aij · 〈fi, fj〉 =

∫ 1

0

∑
(i,j)∈E

aij · fi(t)fj(t)dt.

Hence there exists t0 ∈ [0, 1] for which

∑
(i,j)∈E

aij · fi(t0)fj(t0) ≥
∑

(i,j)∈E

aij · 〈zi, zj〉.

Let xi = fi(t0)/R(G), then xi ∈ [−1, 1] and

R(G)2
∑
i,j

aij · xixj =
∑
i,j

aij · fi(t0)fj(t0) ≥
∑
i,j

aij · 〈zi, zj〉.

This inequality (together with Observation 2.6) implies that K(G) ≤ R(G)2.

For every sequence of functions f1, . . . , fn in L∞[0, 1] define its Gram matrix

restricted to the graph G = (V,E) as follows

GG(f1, . . . , fn)ij =


〈fi, fj〉, if (i, j) ∈ E;

0, otherwise.

Let FG(R) be the set of Gram matrices (restricted to G) of functions f1, . . . fn with

‖ · ‖∞ norm bounded by R:

FG(R) = {GG(f1, . . . , fn) : ‖fi‖∞ ≤ R for all i} .
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Similarly define GG(z1, . . . , zn) for arbitrary vectors z1, . . . , zn:

GG(z1, . . . , zn)ij =


〈zi, zj〉, if (i, j) ∈ E;

0, otherwise;

and let ZG be the set of Gram matrices of all sets of unit vectors z1, . . . , zn:

ZG = {GG(z1, . . . , zn) : ‖zi‖2 = 1} .

Observation 2.10. The Gram representation constant R(G) is the minimum R

for which the set FG(R) contains the set ZG.

Proof. The set ZG is a subset of FG(R), if and only if for all unit vectors z1, . . . , zn

there exist functions f1, . . . , fn with ‖fi‖∞ ≤ R such that

GG(z1, . . . , zn) = GG(z1, . . . , zn)

which is equivalent to

〈zi, zj〉 = 〈fi, fj〉 for all (i, j) ∈ E.

Lemma 2.11. The sets FG(R) and ZG are convex.

Proof. I. First we show that the set FG(R) is convex. Fix λ ∈ (0, 1) and consider
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arbitrary Gram matrices

gA = GG(fA1 , . . . , f
A
n ) ∈ FG(R);

gB = GG(fB1 , . . . , f
B
n ) ∈ FG(R).

We need to prove that λgA + (1− λ)gB ∈ FG(R).

t0 1

−1

1
fA

i

t0 1

−1

1
fB

i

t0 1

−1

1
fi

λ

Define

fi(t) =


fAi (t/λ), if t ∈ [0, λ];

fBi
(
t−λ
1−λ

)
, if t ∈ [λ, 1].

Then

〈fi, fj〉 =

∫ λ

0

fAi (t/λ)fAj (t/λ)dt+

∫ 1

λ

fBi

(
t− λ
1− λ

)
fBj

(
t− λ
1− λ

)
dt

= λ〈fAi , fAj 〉+ (1− λ)〈fBi , fBj 〉

and we are done.

II. The proof that the set ZG is convex is similar. Consider two matrices

gA = GG(zA1 , . . . , z
A
n ) ∈ ZG;

gB = GG(zB1 , . . . , z
B
n ) ∈ ZG.
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Define zi = (
√
λ zAi )⊕ (

√
1− λ zBi ). Then zi are unit vectors and

〈zi, zj〉 = 〈
√
λ zAi ,

√
λ zAj 〉+ 〈√1− λ zBi ,

√
1− λ zBj 〉

= λ 〈zAi , zAj 〉+ (1− λ) 〈zBi , zBj 〉.

Lemma 2.12. Let G be a graph without loops. Then K(G) ≥ R(G)2.

Proof. We prove that ZG ⊂ FG(
√
K(G)) and thus R(G)2 ≤ K(G) (see Obser-

vation 2.10). Suppose to the contrary, that there exists a set of unit vectors

z1, . . . , zn such that the Gram matrix GG(z1, . . . , zn) is not in the set FG(
√
K(G)).

Since the set FG(
√
K(G)) is convex there exists a hyperplane separating it from

GG(z1, . . . , zn). In other words, there exists a set of weights aij such that for ev-

ery g ∈ FG(
√
K(G)),

∑
i,j

aij · gij <
∑
i,j

aij · 〈zi, zj〉I((i, j) ∈ E); (2.5)

where I denotes the indicator function. If (i, j) /∈ E, then gij = I((i, j) ∈ E) = 0,

hence we can assume that aij is also 0, for (i, j) /∈ E. Then A ∈ AG and

∑
i,j

aij · gij <
∑
i,j

aij · 〈zi, zj〉. (2.6)
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A

GG(z1, . . . , zn)

FG(R)

On the other hand, by the definition of K(G) there exists a sequence x1, . . . , xn ∈
{±1} such that

∑
i,j

aij ·
(
xi
√
K(G)

)(
xj
√
K(G)

)
≥
∑
i,j

aij · 〈zi, zj〉

and hence for constant functions fi(t) = xi
√
K(G)

∑
i,j

aij · 〈fi, fj〉 ≥
∑
i,j

aij · 〈zi, zj〉.

This contradicts the inequality (2.6) and finishes the proof.

2.5 Upper Bounds

In this section, we present an algorithm for MAX QP and analyze its approximation

ratio for different families of matrices.

Let MINA and MAXA be the minimum and maximum of the quadratic form∑
i,j aij〈zi, zj〉 over vectors z1, . . . , zn in the unit ball:

MAXA = max
‖zi‖2≤1

∑
i,j

aij〈zi, zj〉;

MINA = min
‖zi‖2≤1

∑
i,j

aij〈zi, zj〉;
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and let

αA = −MINA

MAXA

.

We point out that MINA is non-positive, and therefore αA is non-negative. Also

notice that MINA and MAXA can be computed efficiently using Semidefinite Pro-

gramming. We need the following simple observation.

Lemma 2.13. Let X1, . . . , Xn and Y1, . . . , Yn be (correlated) random variables with

mean 0.

1. If Var [Xi] ≤ 1 for all i, then

MINA ≤
∑
i,j

aij〈Xi, Xj〉 ≤MAXA.

2. If Var [Xi] ≤ α2 and Var [Yi] ≤ β2 for all i, then

∑
i,j

aij〈Xi, Yj〉 ≤ αβ · (MAXA −MINA).

Proof. I. Consider the linear space of random variables spanned by X1, . . . , Xn with

inner product between two random variables equal to their covariance. This space

is isometric to Euclidean space (as every linear space over R with positive definite

inner product). So the first inequality follows from the definition of MINA and

MAXA.
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II. Let X̂i = α−1Xi/2 and Ŷi = β−1Yi/2. Write

∑
i,j

aij〈Xi, Yj〉 = 4αβ ·
∑
i,j

aij〈X̂i, Ŷj〉

= αβ ·
(∑

i,j

aij〈X̂i + Ŷi, X̂j + Ŷj〉 −
∑
i,j

aij〈X̂i − Ŷi, X̂j − Ŷj〉
)
.

Notice that Var
[
X̂i + Ŷi

]
≤ 1 and Var

[
X̂i − Ŷi

]
≤ 1 for all i, hence the right hand

side is bounded by αβ · (MAXA −MINA).

Lemma 2.14. I. For every n× n matrix A = (aij),

GAP ′A ≤ C1 + C2 log (1 + |αA|) ,

for some absolute constants C1 and C2. Moreover, there exists a randomized poly-

nomial time algorithm that given a matrix A computes x1, . . . xn ∈ [−1, 1] such that

∑
i,j

aij · xixj ≥ MAXA

C1 + C2 log (1 + |αA|) .

II. For every n× n matrix A = (aij) with non-negative diagonal entries,

GAPA ≤ C1 + C2 log (1 + |αA|) .

Proof. I. Let z1, . . . , zn ∈ Sn−1 be a solution of the SDP relaxation (2.2):

∑
i,j

aij〈zi, zj〉 = MAXA.
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Our goal is to construct random variables Xi taking values in [−1, 1] such that

∑
i,j

aij〈Xi, Xj〉 = E

[∑
i,j

aijXiXj

]
≥ MAXA

C1 + C2 log (1 + |αA|) .

Then with constant probability (by the Markov inequality)

MAXA ≤ (C ′1 + C ′2 log (1 + |αA|)) ·
∑
i,j

aijXiXj,

which will conclude the proof.

Pick a random Gaussian vector g in the n-dimensional space with coordinates

i.i.d. asN (0, 1). Project g on each vector zi and denote the lengths of the projections

by Pi. In other words, Pi = 〈g, zi〉. Note that each Pi is a normal random variable

with mean 0, variance ‖zi‖22 and

〈Pi, Pj〉 ≡ E [PiPj] = 〈zi, zj〉.

This follows from the equality E [〈u, g〉, 〈v, g〉] = 〈u, v〉 that holds2 for all vectors u

and v. Hence,

MAXA =
∑
i,j

aij · 〈Xi, Xj〉.

Fix M = 4 + 4
√

log(1 + |αA|) and consider truncated random variables PM
i :

PM
i =


Pi, if Pi ∈ [−M,M ];

0, otherwise.

2This equality holds for all basis vectors u and v just by the definition of g. We can extend it
to all u and v in Rn, because both functions E [〈u, g〉, 〈v, g〉] and 〈u, v〉 are linear in u and v.
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Let Ti = Pi − PM
i . Write

∑
i,j

aij · 〈PM
i , PM

j 〉 =
∑
i,j

aij · 〈Pi − Ti, Pj − Tj〉 (2.7)

= MAXA − 2
∑
i,j

aij · 〈Pi, Tj〉+
∑
i,j

aij · 〈Ti, Tj〉.

We need to estimate the terms

−
∑
i,j

aij · 〈Pi, Tj〉 and
∑
i,j

aij · 〈Ti, Tj〉. (2.8)

The variance of Ti is equal to

Var [Ti] =

√
2

π

∫ ∞
M

t2e−t
2/2dt ≤

√
3

π
Me−M

2/2.

The inequality above holds since (1) when M tends to infinity, both sides of the

inequality tend to 0; (2) the derivative of the left hand side (−√2/πM2e−M
2/2) is

greater than the derivative of the right hand side (
√

3/π(1−M2)e−M
2/2) for M ≥ 3.

Plugging M in we get

Var [Ti] ≤ e−M
2/4 ≤ 1

50
×
(
MAXA + |MINA|

MAXA

)2

.

Hence, by Lemma 2.13, expressions (2.8) are greater than −MAXA/7. Let us

now return to inequality (2.7):

∑
i,j

aij · 〈PM
i , PM

j 〉 ≥MAXA − 3

7
MAXA ≥ 1

2
MAXA.
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1. Solve the Semidefinite Program (2.2). Denote by zi the solution and let
MAXA be the SDP value.

2. Compute MINA and denote αA = −MINA/MAXA.
Set M = 4 + 4

√
log(1 + |αA|).

3. Pick a random Gaussian vector g in the n-dimensional space with coordinates
i.i.d. as N (0, 1).

4. For each i,

• Let Pi = 〈g, zi〉.
• Let

PM
i =

{
Pi, if Pi ∈ [−M,M ];

0, otherwise.

• Let xi = PM
i /M .

5. Return x1, . . . , xn.

Figure 2.1: Approximation Algorithm for MAX QP

We are almost done. Let Xi = PM
i /M . Then (for appropriate C1 and C2)

∑
i,j

aij · 〈Xi, Xj〉 ≥ MAXA

2M2
≥ MAXA

C1 + C2 log(1 + |α|) .

The proof we just described immediately gives an algorithm for finding xi (see

Figure 2.1).

II. If the diagonal entries of A are non-negative, then due to Observation 2.6,

GAPA = GAP ′A.
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Remark 2.15. Rietz [55] and Nesterov [50] showed that there exists a π/2 approx-

imation algorithm for MAX QP for positive semidefinite matrices A. Note that

our algorithm also gives a constant factor approximation (with suboptimal constant),

since if A is positive semidefinite, then αA = 0 and the diagonal entries of A are

non-negative.

The next theorem gives a good upper bound for matrices whose entries are highly

non-uniform.

Theorem 2.16. There exists a positive constant C such that for every n×n matrix

A = (aij):

max
‖zi‖2≤1

n∑
i,j=1

aij〈zi, zj〉 ≤ C log

 ∑n
i,j=1 |aij|

trA+
√

2
∑

i 6=j a
2
ij

 · max
|xi|≤1

n∑
i,j=1

aij · xixj.

Here trA = a11 + · · ·+ ann denotes the trace of the matrix A.

Proof. Without loss of generality assume that the matrix A is symmetric. We need

to show that

|αA| ≡ |MINA|
MAXA

≤
∑n

i,j=1 |aij|
trA+

√
2
∑

i 6=j a
2
ij

.

Clearly,

|MINA| ≡ |min
n∑

i,j=1

aij〈zi, zj〉| ≤
n∑

i,j=1

|aij|.

We shall prove that

MAXA ≡ max
‖zi‖=1

n∑
i,j=1

aij〈zi, zj〉 ≥ max
xi∈{±1}

n∑
i,j=1

aijxixj ≥ trA+

√
2
∑
i 6=j

a2
ij.

Let X1, . . . , Xn be i.i.d. Bernoulli random variable taking values {−1, 1} with prob-
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ability 1/2. Consider the random variable

∑
i<j

aij ·XiXj.

Notice that the terms in this sum are pairwise independent random variables and

the expectation of each of them is zero. Therefore,

Var

[∑
i<j

aij ·XiXj

]
=
∑
i<j

Var [aij ·XiXj] =
∑
i<j

a2
ij,

and

E

(∑
i 6=j

aij ·XiXj

)2
 = Var

[∑
i 6=j

aij ·XiXj

]
= 4

∑
i<j

a2
ij.

Hence there exist x1, . . . , xn ∈ {±1} such that

(∑
i 6=j

aij · xixj
)2

≥ 4
∑
i<j

a2
ij.

We get
n∑

i,j=1

aij · xixj = trA+
∑
i 6=j

aij · xixj ≥ trA+

√
2
∑
i 6=j

a2
ij.

We now define strict vector coloring and then bound αA in terms of the strict

vector chromatic number.

Definition 2.17. A strict vector k-coloring of a graph on vertices {1, . . . , n} is a

collection of unit vectors v1, . . . , vn such that for every two adjacent vertices i and j

〈vi, vj〉 = − 1

k − 1
.

27



A graph is strictly vector k-colorable if it has a strict vector k-coloring. The

strict vector chromatic number of a graph is the smallest real k for which the graph

is strictly vector k-colorable. The strict vector chromatic number is denoted by

χvec(G).

The notion of strict vector colorability was introduced by Karger, Motwani, and

Sudan [35]. They showed that the strict vector chromatic number of a graph G

is equal to the Lovász theta function of the complement of G, ϑ(G). Note that

the strict vector chromatic number of graph G is always bounded by the chromatic

number of G:

χvec(G) ≤ χ(G).

We need the following new characterization of the strict vector chromatic number.

Theorem 2.18. For every graph G = (V,E) without loops

χvec(G)− 1 = max
A∈AG

αA ≡ max
A∈AG

−MINA

MAXA

.

We split the proof into two lemmas.

Lemma 2.19. For every graph G and matrix A = (aij) in AG,

χvec(G)− 1 ≥ −MINA

MAXA

.

Proof. Let v1, . . . , vn be the optimal strict vector coloring and let z1, . . . zn be arbi-

trary vectors in the unit ball. Define wi = vi ⊗ zi. Notice that the lengths of the

28



vectors wi do not exceed 1, hence

MAXA ≥
∑
i,j

aij〈wi, wj〉 =
∑
i,j

aij〈vi, vj〉 · 〈zi, zj〉

= − 1

χvec(G)− 1

(∑
i,j

aij〈zi, zj〉
)
.

Therefore, MAXA ≥ −MINA/(χvec(G)− 1).

Lemma 2.20. For every (loop-free) graph G,

χvec(G)− 1 ≤ max
A∈AG

αA.

Proof. The proof of the lemma uses a duality argument and is similar to the proof

of Lemma 2.12. Denote α = maxA∈AG αA, and assume to the contrary that α <

χvec(G)− 1. This means that the graph G is not strictly (α+ 1)-colorable. In other

words, the matrix

gij ≡


−α−1, if (i, j) ∈ E;

0, otherwise;

is not a Gram matrix restricted to G of any set of unit vectors i.e. (gij) /∈ ZG.

Hence there is a hyperplane separating the matrix (gij) and the set of matrices ZG:

there exists a matrix (aij) in AG such that

∑
(i,j)∈E

aijgij >
∑

(i,j)∈E

aij · 〈zi, zj〉
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for every z1, . . . , zn ∈ Sn−1. Particularly,

∑
(i,j)∈E

aijgij > MAXA.

Substituting gij = −α−1 (for (i, j) ∈ E) we get

−α−1
∑

(i,j)∈E

aij > MAXA.

Hence

α <
−∑(i,j)∈E aij

MAXA

=
−∑(i,j)∈E aij × 1 · 1

MAXA

≤ −MINA

MAXA

.

This inequality contradicts the definition of α and we are done.

We now prove Theorem 2.3.

Theorem 2.3. There exists a constant C such that for every (loop-free) graph G,

K(G) ≤ C log ϑ(Ḡ),

where ϑ(Ḡ) is the Lovász theta function of the complement of G.

Proof. By Theorem 2.16 (see also Observation 2.6),

K(G) ≤ max
A∈AG

(
C1 + C2 log

(
1 +
|MINA|
MAXA

))
.

By Theorem 2.18,

max
A∈AG

−MINA

MAXA

= χvec(G) = ϑ(Ḡ).

Hence,

K(G) ≤ ϑ(Ḡ).
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Remark 2.21. Since the strict vector chromatic number is less than or equal to the

chromatic number χ(G), the result above implies that for any loop-free graph G,

K(G) = O (logχ(G)) .

2.6 Tight Lower Bound for Complete Graphs

In this section we prove that the Gram representation constant R(Kn) of the com-

plete graph Kn is Ω(
√

log n), and thus the Grothendieck constant K(Kn) of the

complete graph is Ω(log n). We construct an explicit example of vectors zi for

which every set of functions fi satisfying 〈fi, fj〉 = 〈zi, zj〉 for i 6= j contains a

function with ‖ · ‖∞ norm greater than Ω(
√

log n). Our proof is a refinement of the

argument of Kashin and Szarek [36] and is also based on a 1-net on the unit sphere.

Definition 2.22. A set of points S on the unit sphere Sd−1 forms an ε-net if the

distance from every point z on the sphere to the set S is at most ε:

d2(z, S) ≡ min {‖z − z′‖2 : z′ ∈ S} ≤ ε.

We prove a well-known bound on the size of a 1-net on Sd−1.

Lemma 2.23. For every d there exists a 1-net S on the sphere Sd−1 of size at

most 3d.

Proof. Consider a maximal subset of points S of the sphere Sd−1 such that the

distance between every two points in S is at least 1. Clearly, S forms a 1-net:
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indeed, if there existed a point z in Sd−1 such that d2(z, S) > 1 we could add z to

S, which would contradict the maximality of the set S.

To estimate the size of S notice that balls of radius 1/2 around points in S do

not intersect with each other and all of them lie in the ball of radius 3/2 around

the origin. Therefore, the number of points in S is at most the ratio between the

volumes of balls of radius 3/2 and 1/2 in the d dimensional space, that is 3d.

We need the following simple property of 1-nets.

Lemma 2.24. Suppose vectors z1, . . . , zn form a 1-net on the unit sphere Sd−1.

Then for every vector v in Rd,

max
m
〈zm, v〉 ≥ ‖v‖2

2
.

Proof. If v = 0, then both sides are equal to 0. Suppose v 6= 0. Let v̂ = v/‖v‖2.
The vector v̂ lies on the unit sphere and hence the exists zm such that ‖v̂−zm‖ ≤ 1.

The angle between v̂ and zm is at most π/3. Thus, 〈zm, v〉 ≥ ‖v‖2/2.

In the definition of R(Kn) we require that 〈fi, fj〉 = 〈zi, zj〉 for i 6= j, but 〈fi, fi〉
can be arbitrary. It turns out, however, that we can always find functions fi with

‖ · ‖2 norm very close to 1. The following lemma gives a quantitative bound on the

norm. A similar statement was used (implicitly) by Kashin and Szarek [36].

Lemma 2.25. For every set of unit vectors z1, . . . , zn ∈ Sn−1 there exists a sequence

of functions f1, . . . , fn ∈ L∞[0, 1] such that for all i 6= j,

1.

〈fi, fj〉 = 〈zi, zj〉;
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2.

‖fi‖∞ ≤ R(Kn3);

3.

1 ≤ ‖f‖22 ≤ 1 +
R(Kn3)2

n2
.

Proof. For each vector zi, consider n2 its copies

zki = zi,

where i ∈ {1, . . . , n} and k ∈ {1, . . . , n2}. By the definition of R(Kn3) there exist

functions fki such that for all (i, k) 6= (j, l)

〈fki , f lj〉 = 〈zki , zlj〉

and ‖fki ‖∞ ≤ R(Kn3). Define fi to be the average of fki :

fi =
f 1
i + · · ·+ fn

2

i

n2
.

Verify that f1, . . . , fn satisfy conditions 1–3.

1. For i 6= j,

〈fi, fj〉 =

〈
f 1
i + · · ·+ fn

2

i

n2
,
f 1
j + · · ·+ fn

2

j

n2

〉

=

∑n2

k,l=1〈fki , f lj〉
n4

=

∑n2

k,l=1〈zi, zj〉
n4

= 〈zi, zj〉.
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2. We have

‖fi‖∞ ≤ ‖f
1
i ‖∞ + · · ·+ ‖fn2

i ‖∞
n2

≤ R(Kn3).

3. Notice that 〈fki , f li 〉 = 〈zi, zi〉 = 1 for k 6= l, therefore

‖fi‖22 =
1

n4

n2∑
k=1

‖fki ‖22 +
1

n4

n2∑
k,l=1
k 6=l

〈fki , f li 〉 =
1

n4

n2∑
k=1

‖fki ‖22 + (1− 1

n2
).

Now,

1

n4

n2∑
k=1

‖fki ‖22 =
1

n4(n2 − 1)

n2∑
k,l=1
k 6=l

‖fki ‖22 + ‖f li‖22
2

≥ 1

n4(n2 − 1)

n2∑
k,l=1
k 6=l

〈fki , f li 〉

=
1

n4(n2 − 1)

n2∑
k,l=1
k 6=l

〈fi, fi〉 =
1

n2
.

On the other hand,

1

n4

n2∑
k=1

‖fki ‖22 ≤
1

n4

n2∑
k=1

‖fki ‖2∞ ≤
1

n4

n2∑
k=1

R(Kn3)2 =
R(Kn3)2

n2
.

Hence

1 ≤ ‖fi‖22 ≤ 1 +
R(Kn3)2

n2
.
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Theorem 2.26. There exists an absolute positive constant C such that for every n,

R(Kn) ≥ C
√

log n.

Proof. Fix a positive d and set n = 3d. Our construction consists of N = d+n vec-

tors: vectors e1, . . . , ed that form an orthonormal basis3 in the d-dimensional space,

and vectors z1, . . . , zn that form a 1-net on the sphere Sd−1. Let ψ(e1), . . . , ψ(ed) and

ψ(z1), . . . , ψ(zn) be functions that satisfy conditions 1–3 of Lemma 2.25. Denote

R = R(KN3) and ε = R2/N2. Then for every i ∈ {1, . . . , d} and j ∈ {1, . . . , n},
1 ≤ ‖ψ(ei)‖22 ≤ 1 + ε and 1 ≤ ‖ψ(zj)‖22 ≤ 1 + ε.

We extend linearly the mapping ψ from the basis e1, . . . , ed to the whole space

Rd i.e. for every z in Rd define

ϕ(z) =
d∑
i=1

〈z, ei〉ψ(ei).

Note that for a fixed z, ϕ(z) is a function from [0, 1] to R. We show that ϕ(zm) is

close to ψ(zm) for all m. For all unit vectors z, we have

‖ϕ(z)‖22 =

〈
d∑
i=1

〈z, ei〉ψ(ei),
d∑
i=1

〈z, ei〉ψ(ei)

〉

=
d∑
i=1

(〈z, ei〉)2‖ψ(ei)‖22

≤ max
i
‖ψ(ei)‖22 ≤ 1 + ε.

3Note that we added the vectors e1, . . . , ed to our construction for simplicity of presentation.
In fact, it suffices to consider only vectors z1, . . . , zn. See Alon, Makarychev, Makarychev and
Naor [6] for details.
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Then for every zm,

‖ϕ(zm)− ψ(zm)‖22 = ‖ϕ(zm)‖22 + ‖ψ(zm)‖22 − 2〈ϕ(zm), ψ(zm)〉

≤ 2 + 2ε− 2

〈
d∑
i=1

〈zm, ei〉ψ(ei), ψ(zm)

〉

= 2 + 2ε− 2
d∑
i=1

(〈zm, ei〉)2 = 2 + 2ε− 2‖zm‖22
= 2ε.

Consider the function Φ : [0, 1]→ Rd defined as follows:

Φ(t) =
d∑
i=1

ψ(ei)(t)ei.

Our goal is to estimate

‖Φ‖22 ≡
∫ 1

0

‖Φ(t)‖22dt.

Notice that the linear operator ϕ can now be expressed as

ϕ(z)(t) = 〈Φ(t), z〉.

Hence for every zm,

∫ 1

0

|〈Φ(t), zm〉 − ψ(zm)(t)|2dt = ‖ϕ(zm)− ψ(zm)‖22 ≤ 2ε.

Since ‖ψ(zm)‖∞ ≤ R, we have

µ {t : |〈Φ(t), zm〉| > R + 1} ≤ µ {t : |〈Φ(t), zm〉 − ψ(zm)(t)| ≥ 1} ≤ 2ε.
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Now by Lemma 2.24,

µ {t : ‖Φ(t)‖2 > 2(R + 1)} ≤
n∑

m=1

µ {t : 〈Φ(t), zm〉 > R + 1} ≤ 2εn.

The length of Φ(t) is less than (R+ 1) for t in a set of measure 1− 2εn. Moreover,

since the coordinates of Φ(t) are less than R in absolute value, the length of Φ(t) is

bounded by R
√
d for the rest of t. Therefore,

‖Φ‖22 ≡
∫ 1

0

‖Φ(t)‖22dt ≤ 1× (R + 1)2 + 2εn× dR2 ≤ (R + 1)2 +
2dR4

N
.

On the other hand,

‖Φ‖22 ≡
∫ 1

0

‖Φ(t)‖22dt =
d∑
i=1

∫ 1

0

‖ψ(ei)(t)‖22dt =
d∑
i=1

‖ψ(ei)‖22 ≥ d.

We get

(R + 1)2 +
2dR4

3d
≥ d.

Which implies

R ≡ R(K(3d+d)3) ≥ Ω(
√
d).

Since R(Kn) is a non-decreasing function of n, we get that R(Kn) ≥ Ω(
√

log n) for

every n.

Corollary 2.27. For every integer n,

K(Kn) ≥ C log n,

where C > 0 is a universal constant.
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Proof. By Theorem 2.26,

R(Kn) ≥ C1

√
log n.

Then by Theorem 2.8,

K(Kn) = R(Kn)2 ≥ C2
1 log n.

The corollary immediately implies Theorem 2.4, since K(G) is a monotone func-

tion with respect to taking subgraphs.

Theorem 2.4 There exists an absolute positive constant C such that for every graph

G,

K(G) ≥ C logω(G),

where ω(G) is the clique number of the graph G.

2.7 Homogenous Grothendieck Inequality

The classical Grothendieck inequality has the following equivalent homogenous for-

mulation: For every n×m matrix (bij),

sup
xi,yj∈`2

∑n
i=1

∑m
j=1 bij〈xi, yj〉

maxi,j(‖xi‖2 · ‖yj‖2) ≤ KG · sup
xi,yj∈R

∑n
i=1

∑m
j=1 bijxiyj

maxi,j(|xi| · |yj|) ,

where KG is Grothendieck’s constant. There is a natural homogenous extension of

Grothendieck’s inequality to the case of arbitrary graphs.
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Theorem 2.28. For every loop-free graph G = (V,E) and matrix A in AG,

max
zi∈Rn

∑
i,j aij · 〈zi, zj〉

max(i,j)∈E(‖zi‖2 · ‖zj‖2) ≤ K(G) ·max
xi∈R

∑
i,j aij · xixj

max(i,j)∈E(|xi| · |xj|) .

Proof. We shall prove a stronger statement: For every set of vectors z1, . . . , zn there

exist numbers x1, . . . , xn such that |xi| = ‖zi‖2 for all i and

∑
i,j

aij〈zi, zj〉 ≤ K(G)
∑
i,j

aij · xixj.

Particularly, |xi|·|xj| = ‖zi‖2·‖zj‖2 for every (i, j) ∈ E, which implies the inequality

we want to prove.

Consider the matrix

âij = ‖zi‖2 · ‖zj‖2 × aij

and let ẑi = zi/‖zi‖2 (if zi = 0, then ẑi is an arbitrary unit vector.). Write

∑
i,j

aij〈zi, zj〉 =
∑
i,j

aij · ‖zi‖2 · ‖zi‖2 ×
〈

zi
‖zi‖2 ,

zj
‖zj‖2

〉
=
∑
i,j

âij × 〈ẑi, ẑj〉.

Since ẑi are unit vectors, there exist numbers x̂1, . . . , x̂n ∈ {±1} such that

∑
i,j

âij · 〈ẑi, ẑj〉 ≤ K(G)
∑
i,j

âij · x̂ix̂j = K(G)
∑
i,j

aij · (‖zi‖2x̂i) · (‖zj‖2x̂j).

Thus we proved that the sequence xi = ‖zi‖2 ·x̂i satisfies the required conditions.
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2.8 Restricted Families of Graphs

By Theorems 2.3 and 2.4, if G is a graph containing a clique of size whose loga-

rithm is proportional to the logarithm of the theta function of G, then K(G) =

Θ(logω(G)). In particular, this holds for any perfect graph G, as in this case

ω(G) = χ(G) = ϑ(G). Note that it may be desirable to optimize quadratic forms

as in (2.1) for various classes of perfect graphs, like comparability graphs or chordal

graphs. Since the chromatic number of perfect graphs can be determined in polyno-

mial time, it follows that in such cases we can determine the value of K(G) up to a

constant factor, and in case it is smaller than nε where n is the number of vertices,

we can obtain a guaranteed improved approximation of (2.1).

Moreover, by the remark above and the fact that ϑ(G) ≤ χ(G) for every G,

K(G) = Θ(log(χ(G))) for any graph G whose chromatic number is bounded by

a polynomial of the size of its largest clique. There are various known classes of

such graphs, including complements of intersection graphs of the edges of hyper-

graphs with certain properties. See, for example, Alon [3] and Ding, Seymour and

Winkler [19]. Another interesting family of classes of graphs for which this holds

is obtained as follows. Let k ≥ 2 be an integer, and let Gk denote the family of all

graphs which contain no induced star on k vertices. In particular, G2 is the family

of all unions of pairwise vertex disjoint cliques, and G3 is the family of all claw-free

graphs. An easy application of Ramsey Theorem implies that the maximum degree

∆ of any graph G ∈ Gk whose largest clique is of size ω, is at most ωk−1. This

implies that the chromatic number χ of any such graph is at most ωk−1 +1, showing

that (for fixed k) its Grothendieck constant is Θ(log ∆) = Θ(logω) = Θ(logχ).

Since the maximum degree (as well as the fact that G ∈ Gk for some fixed k) can
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be computed efficiently, this is another case in which we can compute the value of

K(G) up to a constant factor.

A graph G is d-degenerate if any subgraph of it contains a vertex of degree at

most d. It is easy and well known that any such graph is (d + 1)-colorable, and

that there is a linear time algorithm that finds, for a given graph G, the smallest

number d such that G is d-degenerate. In particular, graphs of genus g are O(
√
g)-

degenerate, implying that their Grothendieck constant is O(log g).

Other classes of graphs for which the clique number is proportional (with a

universal constant) to the chromatic number (and hence also to the theta function

of the complement), are intersection graphs of a family of homothetic copies of

a fixed convex set in the plane (see Kim, Kostochka and Nakprasit [40]). A few

additional examples appear in the next subsection.

2.9 New Grothendieck-type Inequalities

Theorem 2.3 enables us to generate new Grothendieck type Inequalities, and Theo-

rem 2.4 can be used to show that in some cases these are essentially tight. We list

here several examples that seem interesting.

Let m > 2k > 1 be integers. The Kneser graph S(m, k) is the graph whose

n =
(
m
k

)
vertices are all k-subsets of an m-element set, where two vertices are

adjacent if the corresponding subsets are disjoint. The clique number of S(m, k) is

clearly bm/kc, and as shown by Lovász [44], its chromatic number is m − 2k + 2.

Its theta function, computed by Lovász [45], is
(
m−1
k−1

)
, and as this graph is vertex

transitive, the product of its theta function and that of its complement is the number

of its vertices (see [45]). It thus follows that the theta-function of the complement
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of S(m, k) is m/k. We conclude that the Grothendieck constant of S(m, k) is

Θ(log(m/k)). This gives the following Grothendieck-type inequality.

Proposition 2.29. There exists an absolute constant C such that the following

holds. Let m > 2k > 1 be positive integers. Put M = {1, 2, . . . ,m}, n =
(
m
k

)
, and

let A(I, J) be a real number for each pair of disjoint k-subsets I, J of M . Then for

every vectors zI of lenght 1, there are signs xI ∈ {−1, 1} such that

∑
I,J⊂M
|I|=|J |=k
I∩J=∅

A(I, J)〈zI , zJ〉 ≤ C log
(m
k

) ∑
I,J⊂M
|I|=|J |=k
I∩J=∅

A(I, J)xIxJ .

Moreover, the above inequality is tight, up to the constant factor C, for all admissible

values of m and k.

Let Dm denote the line graph of the directed complete graph on m vertices. This is

the graph whose vertices are all ordered pairs (i, j) with i, j ∈ M = {1, 2, . . . ,m},
i 6= j, in which (i, j) is adjacent to (j, k) for all for all admissible i, j, k ∈ M . It is

known that the chromatic number of this graph is (1 + o(1)) log2m, and it is not

difficult to see that its clique number is 2 and its fractional chromatic number is

at most 4, (see, for example, [8]). As shown in Lovász [45], the theta function of

the complement of any graph is bounded by its fractional chromatic number. This

gives the following inequality.

Proposition 2.30. Let m be a natural number and let A(i, j, k) be a sequence of

real numbers, where 1 ≤ i, j, k ≤ m, i 6= j, j 6= k. Then for all vectors zij, (1 ≤
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i, j ≤ m, i 6= j) of length 1, there exist numbers xij ∈ {−1, 1} such that

∑
i,j,k∈M
i 6=j 6=k

A(i, j, k)〈zij, zjk〉 ≤ C
∑

i,j,k∈M
i 6=j 6=k

A(i, j, k)xijxjk,

where C is an absolute constant.

Let n = 2m, and let M be as before. Let G be the comparability graph of all subsets

of M , ordered by inclusion. Then G is a perfect graph, and its clique number is

m+ 1 = log n+ 1. As G is perfect, this is also its chromatic number (and the theta

function of its complement), providing the following inequality.

Proposition 2.31. Let m be a natural number, let n = 2m, and let A(I, J) be a

real number for each I ( J ⊆ M . Then for every n vectors zI , (I ⊆ M) of length

1, there are numbers xI ∈ {−1, 1} such that

∑
I(J⊆M

A(I, J)〈zI , zJ〉 ≤ C log log n
∑

I(J⊆M

A(I, J)xIxJ ,

where C is an absolute positive constant. This is tight, up to the constant C.
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Chapter 3

Approximation Algorithm for

MAX k-CSP

3.1 Introduction

In this chapter we study the maximum constraint satisfaction problem with k vari-

ables in each constraint (MAX k-CSP): Given a set of boolean variables and con-

straints, where each constraint depends on at most k variables1, our goal is to find

an assignment so as to maximize the number of satisfied constraints.

The approximation factor for MAX k-CSP is of interest in complexity theory

since it is closely tied to the relationship between the completeness and soundness

of k-bit Probabilistically Checkable Proofs (PCPs). Let us give an informal defi-

nition of a PCP2. A language L has a k-query PCP system with soundness α and

completeness β, if given a string y and a proof/witness b1b2 . . . bm the verifier can

1i.e. each constraint is an arbitrary predicate of k variables
2For a formal definition and more details on PCPs, we refer the reader to the book of Arora

and Barak [10].

44



decide (in probabilistic polynomial time in |y|) whether y belongs to L by querying

(non-adaptively) only k bits from b1b2 . . . bm and using only O(log |y|) random bits;

we require that

• If y ∈ L, then there exists a proof b1b2 . . . bm ∈ {0, 1}m that the verifier accepts

with probability at least β.

• If y /∈ L, then the verifier rejects every proof b1b2 . . . bm ∈ {0, 1}m with prob-

ability at least 1− α.

Suppose that a language L has a k-query PCP system. Then given a string y

we can in polynomial time construct a k-CSP instance such that if y ∈ L, then the

number of satisfied constraints in the optimal solution is at least β; if y /∈ L, then the

number of satisfied constraints in the optimal solution is at most α. The variables

in this CSP are bits b1, . . . , bm. For each possible query of the verifier we have a

constraint on the variables being queried3: The constraint is true, if the verifier

accepts the proof; and false otherwise (the decision of the verifier depends only on k

bits from b1 . . . bm, hence each constraint in the CSP depends only on k variables).

Notice that the probability that the verifier accepts a proof b̃1 . . . b̃m is exactly

equal to the fraction of satisfied constraints in the solution b1 = b̃1, . . . , bm = b̃m.

Therefore, if there exists a k-query PCP system with soundness α and completeness

β for an NP - complete language (say, SAT ), then it is NP-hard to distinguish

between k-CSP instances where at most α fraction of all constraints is satisfiable

and instances where at least β fraction of all constraints is satisfiable. This implies

that the ratio β/α is not greater than the approximation factor one can achieve for

the MAX k-CSP problem.

3Note that we can efficiently enumerate all queries, since the verifier uses only O(log |y|) random
bits.
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A trivial algorithm for k-CSP is to pick a random assignment. It satisfies each

constraint with probability at least 1/2k (except those constraints which cannot be

satisfied). Therefore, its approximation ratio is 1/2k. Trevisan [59] improved on this

slightly by giving an algorithm with approximation ratio 2/2k. Until recently, this

was the best approximation ratio for the problem. Recently, Hast [27] proposed an

algorithm with an asymptotically better approximation guarantee Ω
(
k/(2k log k)

)
.

Also, Samorodnitsky and Trevisan [56] proved that it is hard to approximate MAX

k-CSP within 2k/2k for every k ≥ 3, and within (k + 1)/2k for infinitely many k

assuming the Unique Games Conjecture of Khot [37]. We close the gap between the

upper and lower bounds for k-CSP by giving an algorithm with approximation ratio

Ω
(
k/2k

)
. By the results of [56], our algorithm is asymptotically optimal within a

factor of approximately 1/0.44 ≈ 2.27 (assuming the Unique Games Conjecture).

In our algorithm, we use the approach of Hast [27]: we first obtain a “prelim-

inary” solution x1, . . . , xn ∈ {−1, 1} and then independently flip the values of xi

using a slightly biased distribution (i.e. we keep the old value of xi with probability

slightly larger than 1/2). In this paper, we improve and simplify the first step in this

scheme. Namely, we present a new method of finding x1, . . . , xn, based on solving

a certain semidefinite program (SDP) and then rounding the solution to ±1 using

the result of Rietz [55] and Nesterov [50]. Note, that Hast obtains x1, . . . , xn by

maximizing a quadratic form (which differs from our SDP) over the domain {−1, 1}
using the algorithm of Charikar and Wirth [18]. The second step of our algorithm

is essentially the same as in Hast’s algorithm.

Our result is also applicable to MAX k-CSP with a larger domain4: it gives a

Ω
(
k log d/dk

)
approximation for instances with domain size d.

4To apply the result to an instance with a larger domain, we just encode each domain value
with log d bits.
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Let us point out that the case of k = 2 is very different from k ≥ 3. We gave an

approximation algorithm for this case in Charikar, Makarychev, Makarychev [16],

but we do not include it in this dissertation.

3.2 Reduction to Max k-AllEqual

We use Hast’s reduction of the MAX k-CSP problem to the Max k-AllEqual

problem.

Definition 3.1 (Max k-AllEqual Problem). Given a set S of clauses of the form

l1 ≡ l2 ≡ · · · ≡ lk, where each literal li is either a boolean variable xj or its negation

x̄j. The goal is to find an assignment to the variables xi so as to maximize the

number of satisfied clauses.

The reduction works as follows. First, we write each constraint f(xi1 , xi2 , . . . , xik)

as a CNF formula. Then we consider each clause in the CNF formula as a separate

constraint; we get an instance of the MAX k-CSP problem, where each clause

is a conjunction. The new problem is equivalent to the original problem: each

assignment satisfies exactly the same number of clauses in the new problem as in

the original problem. Finally, we replace each conjunction l1 ∧ l2 ∧ . . .∧ lk with the

constraint l1 ≡ l2 ≡ · · · ≡ lk. Clearly, the value of this instance of Max k-AllEqual is

at least the value of the original problem. Moreover, it is at most two times greater

then the value of the original problem: if an assignment {xi} satisfies a constraint

in the new problem, then either the assignment {xi} or the assignment {x̄i} satisfies

the corresponding constraint in the original problem. Therefore, a ρ approximation

guarantee for Max k-AllEqual translates to a ρ/2 approximation guarantee for the

MAX k-CSP.
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Note that this reduction may increase the number of constraints by a factor

of O(2k). However, our approximation algorithm gives a nontrivial approximation

only when k/2k ≥ 1/m where m is the number of constraints, that is, when 2k ≤
O(m logm) is polynomial in m.

Below we consider only the Max k-AllEqual problem.

3.3 SDP Relaxation

For brevity, we denote x̄i by x−i. We think of each clause C as a set of indices: the

clause C defines the constraint “(for all i ∈ C, xi is true) or (for all i ∈ C, xi is

false)”. Without loss of generality we assume that there are no unsatisfiable clauses

in S, i.e. there are no clauses that have both literals xi and x̄i.

We consider the following SDP relaxation of the Max k-AllEqual problem:

maximize
1

k2

∑
C∈S

∥∥∥∥∥∑
i∈C

zi

∥∥∥∥∥
2

subject to

‖zi‖2 = 1 for all i ∈ {±1, . . . ,±n}

zi = −z−i for all i ∈ {±1, . . . ,±n}

This is indeed a relaxation of the problem: in the intended solution zi = z0 if xi is

true, and zi = −z0 if xi is false (where z0 is a fixed unit vector). Then each satisfied

clause contributes 1 to the SDP value. Hence the value of the SDP is greater than
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or equal to the value of the Max k-AllEqual problem. We use the following theorem

of Rietz [55] and Nesterov [50].

Theorem 3.2 (Rietz [55], Nesterov [50]). There exists an efficient algorithm that

given a positive semidefinite matrix A = (aij), and a set of unit vectors zi, assigns

±1 to variables xi, such that

∑
i,j

aij xixj ≥ 2

π

∑
i,j

aij 〈zi, zj〉. (3.1)

Remark 3.3. Rietz proved that for every positive semidefinite matrix A and unit

vectors zi there exist xi ∈ {±1} such that inequality (3.1) holds. Nesterov presented

a polynomial time algorithm that finds such values of xi.

Observe that the quadratic form

1

k2

∑
C∈S

(∑
i∈C

xi

)2

is positive semidefinite. Therefore we can use the algorithm from Theorem 3.2.

Given vectors zi as in the SDP relaxation, it yields numbers xi such that

1

k2

∑
C∈S

(∑
i∈C

xi

)2

≥ 2

π

1

k2

∑
C∈S

∥∥∥∥∥∑
i∈C

zi

∥∥∥∥∥
2

xi ∈ {±1}

xi = −x−i

(Formally, z−i is a shortcut for −zi; x−i is a shortcut for −xi).
In what follows, we assume that k ≥ 3 — for k = 2 we can use the MAX CUT
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1. Solve the semidefinite relaxation for Max k-AllEqual. Get vectors zi.

2. Apply Theorem 3.2 to vectors zi as described above. Get values xi.

3. Let δ =

√
2

k
.

4. For each i ≥ 1 assign (independently)

bi =

{
true, with probability 1+δxi

2
;

false, with probability 1−δxi
2
.

Figure 3.1: Approximation Algorithm for Max k-AllEqual

algorithm by Goemans and Williamson [23] to get a better approximation5.

The approximation algorithm is shown in Figure 3.1.

3.4 Analysis

Theorem 3.4. The approximation algorithm finds an assignment satisfying at least

ck/2k · OPT clauses (where c > 0.88 is an absolute constant), given that OPT

clauses are satisfied in the optimal solution.

Proof. Denote ZC = 1
k

∑
i∈C xi. Then Theorem 3.2 guarantees that

∑
C∈S

Z2
C =

1

k2

∑
C∈S

(∑
i∈C

xi

)2

≥ 2

π

1

k2

∑
C∈S

∥∥∥∥∥∑
i∈C

zi

∥∥∥∥∥
2

=
2

π
SDP ≥ 2

π
OPT,

where SDP is the SDP value.

5Our algorithm works for k = 2 with a slight modification: δ should be less than 1.
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Note that the number of xi equal to 1 is 1+ZC
2
k, the number of xi equal to −1 is

1−ZC
2
k. The probability that a constraint C is satisfied equals

Pr(C is satisfied) = Pr (∀i ∈ C bi = 1) + Pr (∀i ∈ C bi = −1)

=
∏
i∈C

1 + δxi
2

+
∏
i∈C

1− δxi
2

=
1

2k
(
(1 + δ)(1+ZC)k/2 · (1− δ)(1−ZC)k/2

+ (1− δ)(1+ZC)k/2 · (1 + δ)(1−ZC)k/2
)

=
(1− δ2)k/2

2k

((
1 + δ

1− δ
)ZCk/2

+

(
1− δ
1 + δ

)ZCk/2)

=
1

2k
(1− δ2)k/2 · 2 cosh

(
1

2
ln

1 + δ

1− δ · ZCk
)
.

Here, cosh t ≡ (et + e−t)/2. Let α be the minimum of the function cosh t/t2.

Numerical computations show that α > 0.93945.

t

y

0 1 2 3 4

0.93945

y =
cosh t

t2
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We have,

cosh

(
1

2
ln

1 + δ

1− δ · ZCk
)
≥ α

(
1

2
ln

1 + δ

1− δ · ZCk
)2

≥ α (δ · ZCk)2 = 2αZ2
Ck.

Recall that δ =
√

2/k and k ≥ 3. Hence

(1− δ2)k/2 =

(
1− 2

k

)k/2
≥
(

1− 2

k

)
· 1

e
.

Combining these bounds we get,

Pr (C is satisfied) ≥ 4α

e
· k

2k
·
(

1− 2

k

)
· Z2

C .

However, a more careful analysis shows that the factor 1−2/k is not necessary, and

the following bound holds (we give a proof in the next section):

2α(1− δ2)k/2
(

1

2
ln

1 + δ

1− δ · ZCk
)2

≥ 4α

e
Z2
Ck. (3.2)

Therefore,

Pr (C is satisfied) ≥ 4α

e
· k

2k
· Z2

C .

So the expected number of satisfied clauses is

∑
C∈S

Pr (C is satisfied) ≥ 4α

e

k

2k

∑
C∈S

Z2
C ≥

4α

e

k

2k
· 2

π
OPT.

We conclude that the algorithm finds an

8α

πe

k

2k
> 0.88

k

2k
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approximation with high probability.

3.5 Proof of Inequality (3.2)

In this section, we will prove inequality (3.2):

2α(1− δ2)k/2
(

1

2
ln

1 + δ

1− δ · ZCk
)2

≥ 4α

e
Z2
Ck. (3.2)

Proof. Let us first simplify this expression

(1− δ2)k/2

(√
k

2
· ln(1 + δ)− ln(1− δ)

2

)2

≥ e−1.

Note that this inequality holds for 3 ≤ k ≤ 7, which can be verified by direct

computation. So assume that k ≥ 8. Denote t = 2/k; and replace k with 2/t and δ

with
√
t. We get

(1− t)1/t

(
1√
t
· ln(1 +

√
t)− ln(1−√t)

2

)2

≥ e−1.

Take the logarithm of both sides:

ln(1− t)
t

+ 2 ln

(
1√
t
· ln(1 +

√
t)− ln(1−√t)

2

)
≥ −1.

Observe that

1√
t
· ln(1 +

√
t)− ln(1−√t)

2
= 1 +

t

3
+
t2

5
+
t3

7
+ · · · ≥ 1 +

t

3
;
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and

ln(1− t)
t

= −1− t

2
− t2

3
− · · · ≥ −1− t

2
− t2

3
×
∞∑
i=0

ti

≥ −1− t

2
− 4t2

9
.

In the last inequality we used our assumption that t ≡ 2/k ≤ 1/4 . Now,

ln(1− t)
t

+ 2 ln

(
1√
t
· ln(1 +

√
t)− ln(1−√t)

2

)
≥

(
−1− t

2
− 4t2

9

)
+ 2 ln

(
1 +

t

3

)
≥

(
−1− t

2
− 4t2

9

)
+ 2

(
t

3
− t2

18

)
≥ −1 +

t

6
− 5t2

9
≥ −1.

Here (t/6− 5t2/9) is positive, since t ∈ (0, 1/4]. This concludes the proof.
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Chapter 4

Advantage over Random for

Maximum Acyclic Subgraph

4.1 Introduction

The focus of this chapter is the Max Acyclic Subgraph problem which is the

following:

Definition 4.1. Given a directed graph G = (V,E), find the largest subset of edges

which are acyclic. Equivalently, find an ordering of the vertices so as to maximize

the number of edges going forward.

A simple randomized algorithm achieves a factor 1/2 for this problem: Simply

pick a random ordering of the vertices. In fact, one can achieve factor 1/2 by an

even simpler algorithm: Pick an arbitrary ordering of the vertices π and its reverse

πR. One of them has at least 1/2 fraction of the edges in the forward direction.

Improving the 1/2 approximation for Max Acyclic Subgraph is a long standing

open problem. The motivating question for our work was whether it is possible to
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beat this 1/2 approximation.

In fact, algorithms very slightly better than 1/2 are known: Berger and Shor [14]

showed how to get 1/2 + Ω(1/
√
dmax), where dmax is the maximum vertex degree

in the graph. Later Hassin and Rubinstein [26] proposed another algorithm with

the same approximation guarantee, but better running time in certain cases. Note

that these algorithms achieve such a guarantee for any graph: the guarantee does

not depend on the value of the optimal solution.

Let us measure the objective as a fraction of the number of edges. If the optimal

value OPT is 1− ε, for a very small ε, we could use the best known approximation

algorithm for the complementary problem (Min Feedback Arc Set) to beat

the random algorithm. Using the O(log n log log n) algorithm of Seymour [57], for

instances where OPT = 1 − ε and ε = O(1/(log n log log n)), we can indeed beat

1/2 for Max Acyclic Subgraph. This yields an approximation ratio of 1/2 +

Ω(1/(log n log log n)) for the problem.

To summarize, we can beat random for instances where OPT is very close to

1. For instances where OPT is smaller, we do not know of any techniques which

perform better than random. (As mentioned, there are algorithms which have the

guarantee 1/2 + Ω(1/
√
dmax).)

Recently, a related question of approximating the advantage over random has

been studied for several basic optimization problems (see [9, 16, 18, 20, 27, 28, 30,

31]). These studies give a fresh perspective on these optimization problems and

motivated the development of new techniques to extract information from mathe-

matical programming relaxations for them.

Definition 4.2. Let G = (V,E) be a directed graph on n vertices; and let π :
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{1, . . . , n} → V be a linear arrangement of its vertices. Then the advantage or gain1

over random of the arrangement π is equal to the fraction of edges going forward

minus the fraction of edges going backward. We denote the gain over random by

gain(G, π).

If a linear arrangement has value 1/2+δ for Max Acyclic Subgraph, then the

gain of this arrangement is 2δ. The question of beating random for Max Acyclic

Subgraph can be phrased thus: Given an instance with optimal gain δ, can we

guarantee that we produce a solution with gain f(δ)?

Note that the usual notion of approximation only focuses on instances where

the optimal gain δ is close to 1 (undoubtedly a very interesting question). We ask

what guarantee is possible as a function of δ for all values of δ ∈ (0, 1).

Such guarantees were developed for MAX CUT by Charikar and Wirth [18]:

Given a MAX CUT instance, for which the optimal solution has gain δ, we can find

a cut with gain Ω(δ/ log(1/δ)) and Ω(δ/ log n); the former approximation guarantee

is optimal (if the Unique Games Conjecture is true) as was shown by Khot and

O’Donnell [39].

There are some parallels between MAX CUT and Max Acyclic Subgraph,

since a random assignment achieves factor 1/2 for both problems. For MAX

CUT, this was indeed the best known until the seminal work of Goemans and

Williamson [23] using semidefinite programming (SDP). In a sequence of later pa-

pers, our understanding of the MAX CUT SDP has vastly improved. Arguably,

Max Acyclic Subgraph is a more complex problem than MAX CUT. Linear

programming (LP) relaxations for the problem have been studied intensively in the

1This concept has been referred to in the literature as both advantage over random and gain.
We will use both terms interchangeably.
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mathematical programming community (it is sometimes referred to as the linear

ordering problem). For more information we refer the reader to the papers of New-

man [51] and Newman and Vempala [53]. However the best known approximation

for the problem still remains 1/2. Newman [52] recently studied an SDP relaxation

for the problem and gave some evidence to suggest that the SDP might be useful

in beating the 1/2 approximation (in particular, the SDP does well on the known

gap instances for the LP).

In this work, we give an O(log n) approximation for the advantage over random

for Max Acyclic Subgraph. In other words, given an instance where OPT =

1/2 + δ, we find a solution of value 1/2 + Ω(δ/ log n). Prior to our work, no non-

trivial guarantees were known even for instances where OPT was close to 1, say

1− 1/ log n. In contrast, our algorithm gives a non-trivial guarantee even for OPT

close to 1/2. As a byproduct, we obtain a 1/2+Ω(1/ log n) approximation for Max

Acyclic Subgraph — very slightly better than the 1/2 + Ω(1/(log n log log n))

alluded to earlier that comes from Seymour’s algorithm [57]. Note that the known

hardness results for Max Acyclic Subgraph [34, 54] imply that the advantage

over random version has a constant factor hardness.

Vertex ordering problems like Max Acyclic Subgraph seem more complex

than the constraint satisfaction problems that have been recently explored with

the lens of approximating the advantage over random. It is somewhat surprising

therefore that we obtain results for Max Acyclic Subgraph that match the cor-

responding guarantee for MAX CUT. Despite the similarity in the statement of

the result, the techniques are quite different. The log n in MAX CUT comes from

the tail of the Gaussian distribution, while the log n in our result comes from the

number of different distance scales in a linear arrangement. Roughly speaking, our
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results show how ordering information from one distance scale in the optimum so-

lution can be exploited algorithmically. Extending these ideas further to exploiting

information from multiple distance scales simultaneously is a promising avenue for

obtaining a constant better than 1/2 approximation for Max Acyclic Subgraph.

This would be an exciting result indeed.

Our main result is as follows.

Theorem 4.3. There exists a randomized polynomial time algorithm that given a

directed graph G finds a linear arrangement π of its vertices with gain over random

at least Ω(δ/ log n), where δ is the maximum possible gain.

We show a connection between the advantage over random and the cut norm of

the adjacency matrix of the graph G. In Section 4.2, we present a simple algorithm

that finds a linear arrangement with advantage over random proportional to the cut

norm of the adjacency matrix of the graph. Then, in Section 4.6, we prove using

Fourier analysis techniques that the cut norm of the adjacency matrix is within

a log n factor of the optimal gain. We also give an example that shows that our

analysis is tight.
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4.2 Approximation Algorithm

It will be convenient for us to express different quantities in terms of the adjacency

matrix WG of the directed graph G. For unweighted graphs, we define WG as follows:

WG(u, v) =


1, if (u, v) ∈ E;

−1, if (v, u) ∈ E;

0, otherwise.

If both (u, v) ∈ E and (v, u) ∈ E then WG(u, v) = 0. For weighted graphs,

WG(u, v) = weight((u, v))− weight((v, u)),

where weight((u, v)) = 0 if (u, v) /∈ E. Below |E| denotes the total weight of all

edges.

The gain over random is equal to

gain(G, π) =
1

|E|
∑
i<j

WG(πi, πj).

In other words the gain is equal to the sum of the elements in the upper triangle

of the matrix WG, in which rows and columns are arranged according to π, divided

by the number of edges.

Let us now describe our approach to solving the problem. First partition the

vertices of the graph into three sets A, B and C in a special way. Then randomly

permute vertices in each of these sets. Finally, with probability a half output all

vertices in the order A, B, C and with probability a half in the order C, A, B.
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It is easy to see that all edges from A to B go forward; and all edges from B to

A go backward. On the other hand, all other edges go backward or forward with

probability exactly a half. Hence, the expected gain is equal to

1

|E|
∑

u∈A; v∈B

WG(u, v). (4.1)

We just showed that the maximum gain is greater than or equal to (4.1). It turns

out that the converse is also true up to an O(log n) factor. That is, there always

exist disjoint sets A and B for which

1

|E|
∑

u∈A; v∈B

WG(u, v) ≥ gain(G, π)

O(log n)
,

where π is the optimal permutation of the vertices. This statement is the main

technical component of the proof and we prove it in Section 4.6.

4.3 Combinatorial Interpretation of Proof

As a prelude to the technical analysis in Section 4.6, we give a simplified overview.

The goal of the analysis is to show that if there is an ordering π with gain δ, then

there are subsets A and B of such that placing all vertices of A before vertices of B

gives gain at least δ/ log n. (In fact, the sets A and B we construct in our analysis

are not disjoint, but this is easy to fix.)

Define the length of an edge to be the distance between its end points in the

ordering π. We can group edges geometrically by length into O(log n) groups. If

the gain of the ordering π is δ, at least one of these groups must have gain δ/ log n.

We construct the sets A and B by random sampling the positions in the ordering
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π. The selection probabilities vary periodically with position. Roughly speaking, if

we have period P , this targets the group of edges with edge lengths Θ(P ). Since one

of the groups has gain δ/ log n, the sampling process targeted towards that group

will generate sets A and B such that the corresponding ordering has gain δ/ log n.

In our proof later, this sampling is incorporated into a certain bilinear form

(4.5) we analyze. This expression involves terms xk(r) and yk(r) (defined later) that

corresponds to selecting sets A and B randomly where the selection probabilities

vary periodically with position in the ordering π. For appropriate choice of the

period our analysis shows that the bilinear form constructed must have value at

least δ/ log n.

This is a somewhat simplistic explanation that ignores several issues. In fact,

edges could have both positive and negative contributions to the bilinear form con-

structed (positive contributions come from edges going from A to B, negative con-

tributions come from edges going from B to A). Our intuitive explanation focused

on the contribution from one group of edges, but we need to ensure that the poten-

tial negative contributions of the other groups do not overwhelm this. The Fourier

machinery we use allows us to properly account for positive and negative contribu-

tions.

Now, we do not actually know the optimal ordering π, so we do not really

perform this sampling in our algorithm to obtain sets A and B. Instead, we focus

on a quantity called the cut norm which we define in the next section. Our existential

proof is merely an analysis tool that allows us to prove that the cut norm of the

adjacency matrix is large if the gain of some ordering is large. The actual algorithm

uses Alon and Naor’s SDP based approximation for the cut norm. This yields sets

A and B from which we obtain an ordering of the vertices.
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4.4 Efficient Implementation

We now show how to efficiently find sets A and B that maximize (4.1) within a

constant factor and thus obtain an O(log n) approximation for the maximum gain

problem. This problem is closely related to the problem of finding the cut norm of

the matrix WG, which can be approximately solved using the algorithm proposed

by Alon and Naor [7].

Definition 4.4. The cut norm of a matrix W (u, v) is equal to

‖W‖C = max
A,B⊂V

∣∣∣∣∣ ∑
u∈A; v∈B

W (u, v)

∣∣∣∣∣ .
Note that for skew-symmetric matrices

∑
u∈A; v∈B

W (u, v) = −
∑

u∈A; v∈B

W (v, u);

and therefore

‖W‖C = max
A,B⊂V

∑
u∈A; v∈B

W (u, v).

In this definition it is not required that the sets A and B are disjoint. However,

given arbitrary sets A and B, we can always find disjoint sets A′ and B′ such that

∑
u∈A′;v∈B′

W (u, v) ≥ 1

4
·
∑

u∈A; v∈B

W (u, v). (4.2)

In order to do so, we simply partition the vertices of the graph G into two random

sets X and Y . Then set A′ = A ∩X; B′ = B ∩ Y .

Lemma 4.5. For every skew-symmetric matrix G, the sets A′ and B′ (as described
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above) are disjoint and satisfy the following equality:

E

[ ∑
u∈A′,v∈B′

W (u, v)

]
=

1

4

∑
u∈A,v∈B

W (u, v).

Proof. The sets A′ and B′ are disjoint, since the sets X and Y are disjoint. Now,

for every distinct vertices u ∈ A and v ∈ B, the probability that u ∈ A′ and v ∈ B′

equals 1/4. (Note, that the diagonal entries of W are equal to zero.)

We now state the result of Alon and Naor [7].

Theorem 4.6 (Alon and Naor [7]). There exists a randomized polynomial time

algorithm that given a matrix W (u, v) finds two subsets of indices A and B such

that ∣∣∣∣∣ ∑
u∈A; v∈B

W (u, v)

∣∣∣∣∣ ≥ αAN · ‖W‖C ,

where αAN ≈ 0.56.

Applying Lemma 4.5, we get the following corollary.

Corollary 4.7. There exists a randomized polynomial time algorithm that given a

skew-symmetric matrix W (u, v) finds two disjoint subsets A and B such that

∑
u∈A; v∈B

W (u, v) ≥ αAN
4
· ‖W‖C .

This Corollary implies that the algorithm described in the beginning of the

section finds a linear arrangement with gain αAN/4 · ‖WG‖C/|E|. Thus, we proved:

Lemma 4.8. There exists a randomized polynomial time algorithm that given a

directed graph G with adjacency matrix WG(u, v) finds a linear arrangement of the
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vertices with gain

αAN
4
· ‖WG‖C
|E| .

4.5 Discrete Fourier Sine and Cosine Transforms

In the next two sections, we use the discrete Fourier sine and cosine transforms,

which are analogs of the discrete Fourier transform, but are less well known. For

this reason, we briefly describe them and prove the inversion formulas. The reader

familiar with these transforms may freely skip this section.

Let f be a function from {1, . . . , n− 1} to R. Then its discrete Fourier sine

transform is defined as

f̂(t) =
n−1∑
k=1

sin
(πkt
n

)
f(k).

The inversion formula is given by

f(k) =
2

n

n−1∑
t=1

sin
(πkt
n

)
f̂(t).

To prove this formula we need to verify that the functions

k 7→ sin(πkt/n)

form an orthonormal basis, i.e.

2

n

n−1∑
k=1

sin
(πks
n

)
sin
(πkt
n

)
=


1, if s = t;

0, if s 6= t.

(4.3)

We use the following simple lemma.

65



Lemma 4.9. For every n > 1 and 0 < t < n,

n−1∑
k=0

e
πkti
n =


1 + i cot πt

2n
, t is odd;

0, t is even.

Proof. We have
n−1∑
k=0

e
πkti
n =

n−1∑
k=0

(
e
πti
n

)k
=

1− eπti
1− eπtin .

If t is even, then eπti = 1 and we are done. Otherwise,

1− eπti
1− eπtin =

2

1− eπtin =
2(1− e−πtin )

2(1− Re(e
πti
n ))

(4.4)

= 1 + i
sin πt

n

1− cos πt
n

= 1 + i cot
πt

2n
.

Corollary 4.10. For every n > 1 and 0 < t < n,

n−1∑
k=0

sin
πkt

n
=


cot πt

2n
, t is odd;

0, t is even.

n−1∑
k=0

cos
πkt

n
=


1, t is odd;

0, t is even.
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Proof of expression (4.3):

2

n

n−1∑
k=1

sin
(πks
n

)
sin
(πkt
n

)
=

2

n

n−1∑
k=0

sin
(πks
n

)
sin
(πkt
n

)
=

1

n

n−1∑
k=0

cos
π(s− t)k

n
− 1

n

n−1∑
k=0

cos
π(s+ t)k

n
.

If s 6= t, then the sums above are equal by Corollary 4.10. Hence the whole expres-

sion is equal to zero. If s = t, then

2

n

n−1∑
k=1

sin
(πks
n

)
sin
(πkt
n

)
= 1− 1

n

n−1∑
k=0

cos
2π · kt
n

= 1.

This finishes the proof of the inversion formula.

We prove a technical lemma that will be used later.

Lemma 4.11. For every n > 1 and 1 ≤ t ≤ n,

n−1∑
k=0

(n− k) sin
πkt

n+ 1
=

n+ (−1)t

2 tan πt
2(n+1)

.

Proof. We have

n−1∑
k=0

(n− k) sin
πkt

n+ 1
= Im

(
n−1∑
k=0

(n− k) e
πkti
n+1

)
= Im

(
n−1∑
l=0

l∑
k=0

e
πkti
n+1

)

= Im

(
n−1∑
l=0

1− eπt(l+1)i
n+1

1− e πti
n+1

)
= Im

(
n−∑n

l=1 e
πtli
n+1

1− e πti
n+1

)

= Im

 n+ 1

1− e πti
n+1

− 1− eπti(
1− e πti

n+1

)2

 .
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Similarly to (4.4), we get

Im

(
n+ 1

1− e πti
n+1

)
=

n+ 1

2 tan πt
2(n+1)

;

and

Im

 1− eπti(
1− e πti

n+1

)2

 =
Im((1 + (−1)t+1)(1− e− πti

n+1 )2)(
1− e πti

n+1

)2 (
1− e− πti

n+1

)2

=
2(1 + (−1)t+1)(1− cos πt

n+1
) sin πt

n+1

(2− 2 cos πt
n+1

)2

=
(1 + (−1)t+1) sin πt

n+1

2(1− cos πt
n+1

)
=

1 + (−1)t+1

2 tan πt
2(n+1)

.

4.6 Cut Norm of Skew-Symmetric Matrices

In this section we will prove that for every linear arrangement π (particularly, for

the optimal linear arrangement)

‖WG‖C ≥ Ω

(
gain(G, π)|E|

log n

)
,

which will conclude the proof of Theorem 4.3. Fix an arbitrary linear arrangement

π and denote

wkl = W (πk, πl).

68



Theorem 4.12. Let W be an n× n skew-symmetric matrix. Define

S+ = S+(W ) =
∑

1≤k<l≤n

wkl.

Then

‖W‖C ≥ Ω

( |S+|
log n

)
.

Remark 4.13. Recall, that gain(G, π) = S+(WG)/|E|, where the columns and rows

in WG are ordered according to the permutation π.

We need several lemmas.

Lemma 4.14. Let Ŝt be the discrete Fourier sine transform of a sequence S1, . . . , Sn−1,

defined as follows

Ŝt =
n−1∑
k=1

sin
(πkt
n

)
Sk.

Then

max
t
|Ŝt| ≥ π

2 log n+O(1)

n−1∑
k=1

Sk.

Proof. The inverse Fourier sine transform is given by

Sk =
2

n

n−1∑
t=1

sin
(πkt
n

)
Ŝt.

Hence,

n−1∑
k=1

Sk =
2

n

n−1∑
k=1

n−1∑
t=1

sin
(πkt
n

)
Ŝt =

2

n

n−1∑
t=1

(
n−1∑
k=1

sin
(πkt
n

))
Ŝt.

By Corollary 4.10,
n−1∑
k=1

sin
πkt

n
=

1− (−1)t

2 tan( πt
2n

)
.
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Then

n−1∑
k=1

Sk ≤ 2

n

n−1∑
t=1

∣∣∣∣1− (−1)t

2 tan( πt
2n

)

∣∣∣∣ |Ŝt|
≤ 2

n

 n−1∑
t=1

t is odd

2n

πt

max
t
|Ŝt| = 2

π
(log n+O(1)) max

t
|Ŝt|,

here we used that tanx > x for x ∈ (0, π/2). Therefore,

max
t
|Ŝt| ≥ π

2 log n+O(1)

n−1∑
k=1

Sk.

Lemma 4.15. Let W be an n× n skew-symmetric matrix. Define

Sk =
n−k∑
j=1

wj,j+k

for 1 ≤ k ≤ n− 1. And let Ŝt be the discrete Fourier sine transform of Sk. Then

max
−1≤xk,yl≤1

n∑
k=1

n∑
l=1

wklxkyl ≥ maxt|Ŝt|.

Proof. Let t0 = argmaxt |Ŝt|. For every k, l from 1 to n and r from 0 to n−1 define

xk(r) = sin
(π(k + r)t0

n

)
;

yl(r) = − cos
(
π

(k + r)t0
n

)
.
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Find the average value of the bilinear form

n∑
k=1

n∑
k=1

wklxk(r)yl(r) (4.5)

over r from 0 to n− 1. Write

1

n

n−1∑
r=0

(
n∑
k=1

n∑
l=1

wklxk(r)yl(r)

)
=

1

n

n∑
k=1

n∑
l=1

(
n−1∑
r=0

xk(r)yl(r)

)
wkl.

Observe, that

n−1∑
r=0

xk(r)yl(r) = −
n−1∑
r=0

sin
(π(k + r)t0

n

)
cos
(π(l + r)t0

n

)
= −1

2

n−1∑
r=0

sin
(π(k − l)t0

n

)
+ sin

(π(k + l + 2r)t0
n

)
=
n

2
· sin π(l − k)t0

n
.

Hence,

1

n

n−1∑
r=0

( n∑
k=1

n∑
l=1

wklxk(r)yl(r)
)

=

=
1

2

n∑
k=1

n∑
l=1

sin
(π(l − k)t0

n

)
wkl

=
∑

1≤k<l≤n

sin
(π(l − k)t0

n

)
wkl

=
n−1∑
j=1

sin
(πjt0

n

)
Sj = Ŝt0 .

here we used that the matrix W is skew-symmetric. We got that the average value

of bilinear form (4.5) is Ŝt0 , therefore, there exists r for which the absolute value of
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(4.5) is at least |Ŝt0 |. Since the bilinear form is an odd function as a function of x

(when y is fixed), the maximum of (4.5) is at least |Ŝt0 |.

Corollary 4.16. Let W , Sk and Ŝt be as in Lemma 4.15. Then

max
xk,yl∈{−1,1}

n∑
k=1

n∑
l=1

wklxkyl ≥ max
t
|Ŝt|.

Proof. The maximum of the bilinear form is attained at a vertex of the cube.

The following observation is due to Alon and Naor [7]. We prove it here for

completeness.

Lemma 4.17 (Alon and Naor [7]).

‖W‖C ≥ 1

4
max

xk,yl∈{−1,1}

n∑
k=1

n∑
l=1

wklxkyl.

Proof. Fix xk and yl for which the maximum of the bilinear form is attained. De-

fine sets I+ = {k : xk = 1}, I− = {k : xk = −1}, J+ = {l : yl = 1} and J− =

{l : yl = 1}. Now notice that

n∑
k=1

n∑
l=1

wklxkyl =
∑
k∈I+
l∈J+

wkl +
∑
k∈I−
l∈J−

wkl

−
∑
k∈I+
l∈J−

wkl −
∑
k∈I−
l∈J+

wkl.

Each of the terms on the right hand side does not exceed the cut norm ‖W‖C in

absolute value. Hence
n∑
k=1

n∑
l=1

wklxkyl ≤ 4‖W‖C .
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Now we are ready to prove Theorem 4.12.

Proof of Theorem 4.12. Let

Sk =
n−k∑
j=1

wj,j+k

for 1 ≤ k ≤ n− 1. Then

S+ =
n−1∑
k=1

Sk.

By Lemma 4.14 and Corollary 4.16,

max
xk,yl∈{−1,1}

n∑
k=1

n∑
l=1

wklxkyl ≥ π

2 log n+O(1)

n−1∑
k=1

Sk.

Now by Lemma 4.17,

‖W‖C ≥ π

8 log n+O(1)

n−1∑
k=1

Sk =
π S+

8 log n+O(1)
.

4.7 Lower Bound

We will now prove that the bound in Theorem 4.12 is essentially tight.

Theorem 4.18. For every n > 1, there exists a nonzero n × n skew-symmetric

matrix W such that

‖W‖C ≤ O(|S+|/ log n), (4.6)

where S+ = S+(W ) is defined in Theorem 4.12.
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Proof. Consider the matrix W defined by

wkl =
n∑
t=1

sin
π(l − k)t

n+ 1
.

Clearly, the matrix W is skew-symmetric. Let us compute S+ (see Lemma 4.11 for

details).

S+ =
∑

1≤k<l≤n

wkl =
∑

1≤k<l≤n

n∑
t=1

sin
π(l − k)t

n+ 1

=
n∑
t=1

n−1∑
k=0

(n− k) sin
πkt

n+ 1
=

1

2

n∑
t=1

n+ (−1)t

tan( πt
2(n+1)

)
.

Replace 1/ tanx with 1/x+O(1),

S+ ≥ 1

2

n∑
t=1

(
2n2

πt
+O(n)

)
=
n2

π
(log n+O(1)).

We are now going to estimate ‖W‖C . Pick sets I and J that maximize
∣∣∣∑k∈I; l∈J wkl

∣∣∣.
We have

‖W‖C =
∣∣∣ ∑
k∈I; l∈J

wkl

∣∣∣ =
∣∣∣ ∑
k∈I; l∈J

n∑
t=1

sin
(π(k − l)t

n+ 1

)∣∣∣
=
∣∣∣ ∑
k∈I; l∈J

n∑
t=1

sin
( πkt

n+ 1

)
cos
( πlt

n+ 1

)
− cos

( πkt

n+ 1

)
sin
( πlt

n+ 1

)∣∣∣
≤
∣∣∣ ∑
k∈I; l∈J

n∑
t=1

sin
( πkt

n+ 1

)
cos
( πlt

n+ 1

)∣∣∣+
∣∣∣ ∑
k∈I; l∈J

n∑
t=1

cos
( πkt

n+ 1

)
sin
( πlt

n+ 1

)∣∣∣.
Estimate the first term. Let xk be the indicator of the set I: xk = 1 if k ∈ I, xk = 0

74



otherwise. Let yk be the indicator of the set J . Then the first term equals

TI ≡
n∑
t=1

n∑
k=1

n∑
l=1

sin
( πkt

n+ 1

)
cos
( πlt

n+ 1

)
xkyl

=
n∑
t=1

(
n∑
k=1

sin
( πkt

n+ 1

)
xk

)(
n∑
l=1

cos

(
πlt

n+ 1

)
yl

)

=
n∑
t=1

x̂tŷt,

where x̂t is the Fourier sine transform of xt

x̂t =
n∑
k=1

sin
( πkt

n+ 1

)
xk, 1 ≤ t ≤ n;

and ŷt is the discrete Fourier cosine transform of yk (extended by y0 = yn+1 = 0)

ŷt =
n∑
k=1

cos
( πkt

n+ 1

)
yk, 0 ≤ t ≤ n+ 1.

By the Cauchy–Bunyakovski–Schwartz inequality and Bessel’s inequality, we have

|TI | =
∣∣∣ n∑
t=1

x̂tŷt

∣∣∣ ≤
√√√√ n∑

t=1

x̂2
t

n∑
t=1

ŷ2
t ≤

n+ 1

2

√√√√ n∑
k=1

x2
k

n∑
l=1

y2
l ≤

n2

2
+O(n).

Similarly, the second term is at most n2/2 +O(n). Hence

‖W‖C =
∣∣∣ ∑
k∈I; l∈J

wkl

∣∣∣ ≤ n2 +O(n) ≤ πS+

log n
(1 + o(1)).

This finishes the proof.

We presented a matrix W with real entries for which bound (4.6) holds. This
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matrix corresponds to a directed graph with weighted edges. However, it can be

transformed to a matrix with entries −1, 0 and 1, which corresponds to an un-

weighted directed graph.

Corollary 4.19. There exists a matrix W̃ with entries −1, 0 and 1 that satisfies

bound (4.6).

Proof. Let W be the matrix from Theorem 4.18. By scaling, we may assume that

the largest entry in W equals 1 in absolute value. Let N = 4n4. We construct the

matrix W̃ by replacing each entry wij of W with an N ×N block matrix Rij that

has the following properties. First, each entry of Rij is either −1, 0 or 1. Second,

for every two sets A,B ⊂ {1, . . . , N},

1

N2

∣∣∣∣∣ ∑
k∈A, l∈B

Rij
kl − wij|A||B|

∣∣∣∣∣ < 2√
N

=
1

n2
. (4.7)

We prove that such matrix Rij exists using the probabilistic method (see Alon and

Berger [4] for a similar argument). Let every entry of Rij be equal to sgn(wij) with

probability |wij| and equal to 0 with probability 1 − |wij|. Then, by the Bernstein

inequality/Chernoff bound, for fixed sets A,B ⊂ {1, . . . , N}, we have

Pr

(∣∣∣∣∣ ∑
k∈A, l∈B

Rij
kl − wij|A||B|

∣∣∣∣∣ > 2N2

√
N

)
< 2 exp

(−2 · (2N3/2)2/N2
) ≤ 2e−8N .

Since there are 22N distinct pairs of sets A and B, and 22N · 2e−8N < 1, there exists

a matrix Rij that satisfies inequality (4.7) for all sets A and B simultaneously. (To

ensure that the matrix W̃ is skew-symmetric, we use this argument to find matrices

Rij for i < j; we let Rji = −(Rij)T .)

We verify that the matrix W̃ satisfies bound (4.6). Let us estimate the cut norm
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‖W̃‖C . Let A and B be the sets of indices such that

‖W̃‖C =

∣∣∣∣∣ ∑
k∈A, l∈B

w̃kl

∣∣∣∣∣ .
Denote the restriction of A to the set of row indices of submatrices Ri∗ by Ai; denote

the restriction of B to the set of column indices of submatrices R∗j by Bj. Then

‖W̃‖C =

∣∣∣∣∣∣∣∣
∑

1≤i≤n
1≤j≤n

∑
k∈Ai
l∈Bj

Rij
kl

∣∣∣∣∣∣∣∣
≤ N2

∣∣∣∣∣∣∣
∑

1≤i≤n
1≤j≤n

wij
|Ai|
N

|Bj|
N

∣∣∣∣∣∣∣+N2
∑

1≤i≤n
1≤j≤n

1

n2

≤ N2 (‖W‖C + 1) ≤ 2N2‖W‖C .

Here, first, we used that, 0 ≤ |Ai|/N ≤ 1 and 0 ≤ |Bj|/N ≤ 1, so
∑

ij wij · |Ai|/N ·
|Bj|/N does not exceed the cut norm; second, we used that at least one entry in W

equals to 1 in absolute value, so ‖W‖C ≥ 1. On the other hand, we can estimate

S+(W̃ ) as follows (assume without loss of generality that S+(W ) ≥ 0)

|S+(W̃ )| =
∑

1≤i<j≤n

∑
k,l

Rij
kl ≥

∑
1≤i<j≤n

N2(wij − 1/n2)

≥ N2(S+(W )− 1/2) ≥ N2 S+(W )(1− o(1)).
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Here we used that S+(W ) = Ω(log n)‖W‖C = Ω(log n) = ω(1). Combining the

bounds for ‖W̃‖C and |S+(W̃ )| with bound (4.6), we get

‖W̃‖C ≤ O(S+(W̃ )/ log n).

This concludes the proof.
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Chapter 5

Conclusions and Open Questions

In this dissertation, we introduced a new graph parameter K(G) that is equal to the

integrality gap of a natural SDP relaxation for the MAX QP problem. We showed

that

C1 logw(G) ≤ K(G) ≤ C2ϑ(Ḡ),

where w(G) is the clique number of G; and ϑ(Ḡ) is the Lovász theta function of

the complement of G (which is always smaller than the chromatic number of G).

Even though our lower and upper bounds are equal for several important families

of graphs, in general case there is a gap between them. Thus one of the main

open questions in this dissertation is whether K(G) always equals Θ(ϑ(Ḡ)). From

a mathematical point of view it is also interesting to find the exact value of the

(classical) Grothendieck constant, and understand for which matrices A and which

configurations of vectors z1, . . . , zn the (classical) Grothendieck’s inequality is tight.

The result of Chapter 3 is optimal (up to a constant factor) assuming the Unique

Games Conjecture (UGC). As a consequence any improvements in the approxima-

tion guarantees for MAX k-CSP will refute the UGC. While it is not clear if the
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conjecture is true or false, one can try to disprove it by improving the approximation

ratio of our algorithm.

In Chapter 4, we presented a new method for finding linear arrangements of

directed graphs. Using it we developed a log n-approximation algorithm for the

Advantage over Random for Maximum Acyclic Subgraph problem. One promising

direction for improving the approximation ratio for Maximum Acyclic Subgraph is

to combine our new method with other methods for rounding SDP relaxations.
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[49] A. Nemirovski, C. Roos and T. Terlaky. On Maximization of Quadratic Form

over Intersection of Ellipsoids with Common Center. Mathematical Program-

ming, 1999, Vol. 86 Issue 3, pp. 463–473.

[50] Y. Nesterov. Quality of semidefinite relaxation for nonconvex quadratic opti-

mization. CORE Discussion Paper 9719, March 1997.

86



[51] A. Newman. The Maximum Acyclic Subgraph Problem and Degree-3 Graphs.

Proceedings of APPROX 2001, pp. 147–158.

[52] A. Newman. Cuts and Orderings: On Semidefinite Relaxations for the Linear

Ordering Problem. Proceedings of APPROX 2004, pp. 195–206.

[53] A. Newman and S. Vempala. Fences Are Futile: On Relaxations for the Linear

Ordering Problem. Proceedings of the 8th Conference on Integer Programming

and Combinatorial Optimization, pp. 333–347, 2001.

[54] C. H. Papadimitriou and M. Yannakakis. Optimization, Approximation, and

Complexity Classes. J. Comput. System Sci. 43, pp. 425–440, 1991.

[55] E. Rietz. A proof of the Grothendieck inequality. Israel J. Math, vol. 19,

pp. 271–276, 1974.

[56] A. Samorodnitsky and L. Trevisan. Gowers Uniformity, Influence of Variables,

and PCPs. Proceedings of the 38th ACM STOC, pp. 11–20, 2006.

[57] P. D. Seymour. Packing directed circuits fractionally. Combinatorica (15), pp.

281–288, 1995.

[58] M. Talagrand. Spin glasses: a challenge for mathematicians. Cavity and mean

field models. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 46.

Springer-Verlag, Berlin, 2003.

[59] L. Trevisan. Parallel Approximation Algorithms by Positive Linear Program-

ming. Algorithmica, vol. 21, no. 1, pp. 72–88, 1998.

[60] U. Zwick. Finding almost satisfying assignments. Proceedings of the 30th ACM

STOC, pp. 551–560, 1998.

87



[61] U. Zwick. Analyzing the MAX 2-SAT and MAX DI-CUT approximation algo-

rithms of Feige and Goemans. Manuscript. Available at

www.cs.tau.ac.il/~zwick/my-online-papers.html.

88


