
Approximation Scheme for Weighted Metric Clustering via

Sherali-Adams

Dmitrii Avdiukhin∗

dmitrii.avdiukhin@northwestern.edu

Vaggos Chatziafratis†

vaggos@ucsc.edu

Konstantin Makarychev∗

konstantin@northwestern.edu

Grigory Yaroslavtsev‡

grigory@gmu.edu

Abstract

Motivated by applications to classification problems on metric data, we study Weighted
Metric Clustering problem: given a metric d over n points, the goal is to find a k-partition of
these points into clusters C1, . . . , Ck, while minimizing

∑k
i=1

∑k
j=1

∑
u∈Ci

∑
v∈Cj

Aij duv, where
A is a k×k symmetric matrix with non-negative entries. Specific choices of A lead to Weighted
Metric Clustering capturing well-studied graph partitioning problems in metric spaces, such as
Min-Uncut, Min-k-Sum, Min-k-Cut, and more.

Our main result is that Weighted Metric Clustering admits a polynomial-time approximation
scheme (PTAS). Our algorithm handles all the above problems using the Sherali-Adams linear
programming relaxation. This subsumes several prior works, unifies many of the techniques
for various metric clustering objectives, and yields a PTAS for several new problems, including
metric clustering on manifolds and a new family of hierarchical clustering objectives. Our
experiments on the hierarchical clustering objective show that it better captures the ground-
truth structural information compared to the popular Dasgupta’s objective.

1 Introduction

We introduce and study Weighted Metric Clustering problem: given n points from an arbitrary
metric space (V, d), we want to find a k-partition of V , i.e. a partition into k clusters C1, . . . , Ck,
where k is assumed to be a fixed constant. Because the quality of clustering may depend on the
application at hand, we allow for a user-defined k×k symmetric matrix A with non-negative entries
to be part of the input. Matrix A determines the “cost penalty” for how the k different clusters
interact: if u is assigned to cluster Ci and v is assigned to cluster Cj , then the pair (u, v) pays
Aijduv, where the distance between elements u, v is denoted as duv. Hence, our goal is to minimize
the following objective:

cost(C1, . . . , Ck) =

k∑
i=1

k∑
j=1

AijW(Ci, Cj), where W(Ci, Cj) =
∑
u∈Ci

∑
v∈Cj

duv (⋆)

In Weighted Metric Clustering, n is the number of input variables and k is assumed to be a fixed
constant independent of n. Observe that W(Ci, Cj) can be thought of as an overall measure of

∗Northwestern University, Illinois
†University of California Santa Cruz, California
‡George Mason University, Virginia

dissimilarity between clusters Ci and Cj (or within cluster Ci when i = j), which is weighted with
Aij in the objective (⋆).

Note that we can interpret our objective (⋆) as a minimization valued Constraint Satisfaction
Problem (Min-CSP) on variables in V and domain D = {1, . . . , k}. In this CSP, we have a
constraint for all pairs of variables. The weight of the constraint between variables u and v equals
the distance duv. The payoff function for each constraint is defined by matrix A: namely, the cost
of assigning labels i and j to variables u and v equals Aij . The goal is to find an assignment, i.e. a

mapping ℓ : V → D minimizing the total payoff:
∑k

i=1

∑k
j=1

∑
u∈V

∑
v∈V Aijduv ·1{ℓ(u) = i; ℓ(v) =

j}.
The strength of objective (⋆) lies in the flexibility of choice of matrix A, allowing it to cover

many important problems.

Metric Min-Uncut [Indyk, 1999] This is the complement of Max-Cut where we want to split
into two clusters so as to minimize the sum of pairwise distances within clusters. If in (⋆) we set

k = 2, A =

[
1 0
0 1

]
, then we pay duv only for elements u, v that end up in the same cluster.

Metric Min-k-Sum [Bartal, Charikar, and Raz, 2001] Also termed Min-k-Uncut, this is
the natural extension of the previous problem to k clusters, where we want to minimize the sum of
distances between pairs of points assigned to the same cluster. Fixing A = Ik×k to be the k × k
identity matrix yields the problem.

Metric Multiway Cut [Dahlhaus, Johnson, Papadimitriou, Seymour, and Yannakakis,
1994] We can also model problems where the cost is based on the separated u, v pairs. For
example, taking A = Jk×k − Ik×k, where J is the all-ones matrix, yields the Min-k-Cut objective,
with the goal of minimizing the sum of distances among all pairs of separated points. Min-k-
Cut problem additionally requires that all clusters are non-empty, and one possible approach is
to fix one point per cluster; this variant of the problem, known as a multiway cut, is MAX SNP-
hard [Dahlhaus et al., 1994] even for k = 3. Our algorithms are robust to such modifications of the
objective and provide a PTAS for the metric case for fixed k.

A related problem is a multicut problem (see e.g. Costa, Létocart, and Roupin [2005]), where,
given a set of k pairs {(si, ti)}ki=1, we need to remove the edges with the smallest possible weight
so that si and ti are disconnected for all i. For fixed k, similarly to the multiway cut problem, we
can guess clusters for all si and ti.

Metric Clustering on Manifolds Our formulation can also capture problems where data points
reside on a manifold. In this case, the clusters are related (they can form a chain, a ring, or a grid)
and we would like to find a clustering by grouping adjacent data points. As an example, the chain
topology on four clusters, i.e. C1 − C2 − C3 − C4, can be represent by matrix

A =

2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 2

 ,

indicating that pairs of points in the same cluster pay 2, pairs in the neighboring clusters pay 1,
and pairs in non-neighboring clusters pay 0. Understanding such problems on manifolds served as
motivation for the original work by Song, Smola, Gretton, and Borgwardt [2007] that introduced

2

the maximization variant of a special case of (⋆) called Kernel Clustering. For such problems, to
the best of our knowledge, no approximation was known for the minimization versions and our
results provide the first PTAS.

New Application to Metric Hierarchical Clustering To highlight the versatility of our
objective (⋆), we present an application to hierarchical clustering motivated by graph compression
and graph reordering problems in social networks [Dhulipala, Kabiljo, Karrer, Ottaviano, Pupyrev,
and Shalita, 2016]. We introduce a novel family of minimization objectives over hierarchies which
depend on the depth of the Lowest Common Ancestors (LCA) for pairs of leaves. In contrast, almost
all prior works considered hierarchical clustering objectives based on the size of the LCA [Dasgupta,
2016].

2 Previous Work and Our Results

While there were important works on obtaining PTAS’s for minimization problems [Indyk, 1999,
de la Vega, Karpinski, and Kenyon, 2004, de la Vega, Karpinski, Kenyon, and Rabani, 2003], it was
not a priori clear whether a PTAS for these problems could exist. This is mainly due to pessimistic
hardness results that hold for related minimization problems: for example, for every k > 2 and
ε > 0, the Min-k-Sum problem cannot be approximated within n2−ε, even for dense graphs [Kann,
Khanna, Lagergren, and Panconesi, 1996]. For more background on maximization and Min-CSPs
(Appendix A).

Surprisingly, we show that every problem within our Weighted Metric Clustering (⋆) frame-
work admits a PTAS. As a consequence, this gives alternative PTAS for various problems, e.g., it
subsumes known PTAS results for Metric Min-Uncut [Indyk, 1999] and Metric Min-k-Sum [Bartal,
Charikar, and Raz, 2001]. Furthermore, we give new PTAS’s for various other problems, since any
matrix A gives rise to a new clustering problem. In particular, our framework gives the first PTAS
for metric minimization version of clustering on manifolds mentioned above [Song et al., 2007],
multiway cut [Dahlhaus et al., 1994], and multicut [Costa et al., 2005] problems. Furthermore, we
give PTAS for a new family of hierarchical clustering objectives motivated by graph compression
and graph relabeling.

An interesting aspect of our result is that a single algorithmic technique based on the Sherali–
Adams LP relaxation can accommodate all problems. Notice that just Min-k-Sum required a
variety of tools (and often ad hoc ideas) to get a PTAS: for example, the PTAS of Indyk [1999] for
k = 2 relied on the already known PTAS for metric Max-Cut, the first non-trivial approximation of
Min-k-Sum (for general k) relied on metric embeddings into hierarchically separated trees combined
with dynamic programming, and finally, the PTAS of de la Vega, Karpinski, Kenyon, and Rabani
[2003] used sampling and exhaustive search combined with careful reassignment of nodes to the
k clusters. Our main result can be seen as a unified method that provides PTAS not only for
Min-k-Sum, but all other metric problems in our framework.

Sherali–Adams. The Sherali-Adams lift-and-project method [Sherali and Adams, 1990] is a
powerful technique for strengthening linear programming relaxations. This as well as other lift-
and-project methods (e.g., by Lovász and Schrijver [1991]) have been extensively studied in Com-
puter Science and Operations Research.1 They asked if Sherali-Adams can be used to improve
approximation guarantees for constraint satisfaction and combinatorial optimization problems. It
turns out, that in many cases, the answer to this question is negative. Yannakakis [1988] proved

1See the survey by Chlamtac and Tulsiani [2012] for an overview of results.

3

the Traveling Salesman Problem (TSP) cannot be solved exactly using a symmetric “extended
formulation” of polynomial size and, in particular, by a Sherali-Adams relaxation of polynomial
size. De la Vega and Kenyon-Mathieu [2007] and Charikar, Makarychev, and Makarychev [2009a]
showed that Sherali-Adams relaxation can not be used to improve approximation guarantees for
many constraint satisfaction problems if we do not make additional assumptions about the structure
of the CSP instances (see also Alekhnovich, Arora, and Tourlakis [2011]).

However, in some cases, Sherali-Adams can be used to obtain better approximations for Max-
CSPs. In particular, Yoshida and Zhou [2014] gave a PTAS for dense instances of Max-CSPs (but
not Min-CSPs!). For additional examples of Max-CSP approximations using Sherali-Adams, we
refer the reader to recent papers by Thapper and Zivny [2017], Hopkins, Schramm, and Trevisan
[2020], Romero, Wrochna, and Živnỳ [2021], Cohen-Addad, Lee, and Newman [2022b], Mezei,
Wrochna, and Živnỳ [2023].

Kernel Clustering Motivated by applications in machine learning and statistics, Kernel Clus-
tering was proposed by Song, Smola, Gretton, and Borgwardt [2007] as a broad family of clustering
methods based on the maximization of dependence between the input variables and their cluster
labels. It is a unified framework for various clustering methods arising from geometric, spectral
or statistical considerations, and it has connections to k-means, clustering under topological con-
straints, and hierarchical clustering. Formally, their goal is to maximize objective (⋆) under the
assumption that both the distance matrix d and the cost matrix A are positive semidefinite. On the
other hand, while we require d to be a metric, we don’t require d and A to be positive semidefinite.

Kernel Clustering is a generalization of the positive semidefinite Grothendieck problem [Nes-
terov, 1998] that has found many algorithmic applications [Alon and Naor, 2004, Charikar and
Wirth, 2004, Charikar, Makarychev, and Makarychev, 2009b], and has further connections to
semidefinite programming, non-convex optimization and the Unique Games Conjecture [Khot and
Naor, 2008, 2013]. Khot and Naor [2008, 2013] studied Kernel Clustering, presenting constant
factor approximations and hardness results. In our paper, we show a PTAS for the minimization
version of the problem under metric assumption.

2.1 Main Result

The main question we address here is the following:

What is the best approximation for the Weighted Metric Clustering objective (⋆)?

Our main result shows that we can get an arbitrary good approximation.

Theorem 2.1. (Informal) There is a PTAS2 for the Weighted Metric Clustering objective (⋆).

As a corollary, we get a PTAS not only for all the above-mentioned problems, but also many
more, since any choice of the matrix A generates a new, different clustering objective. In particular,
with careful choice of A, we provide PTAS’s for problems where the PTAS’s were not previously
known, such as clustering on manifolds and a family of hierarchical clustering objectives (Section 3),
where each pair of elements is penalized depending on the depth of their least common ancestors. We
describe the depth-based hierarchical clustering objectives in Section 3, with additional motivation
based on the Minimum Logarithmic Arrangement presented in Appendix F, and we empirically
demonstrate the advantage of these objectives in Section 6.

2For a minimization problem, a PTAS is an algorithm that, given ε > 0 as a parameter, returns a (1 + ε)-
approximation to the optimal value and runs in polynomial time for any constant ε. For maximization, we seek a
(1− ε)-approximation.

4

Note that without metric assumption, we cannot have a PTAS even when k = 3 [Khot and
Naor, 2013] under the Unique Games Conjecture, hence it’s remarkable that a PTAS for the metric
minimization version is possible. Moreover, we handle Weighted Metric Clustering using a single
algorithmic technique via the Sherali–Adams linear programming [Sherali and Adams, 1990]. This
subsumes several prior works, unifies many of the techniques on various clustering objectives, and
yields PTAS’s for new problems, including a new family of hierarchical clustering objectives.

Our Techniques While it is already known that the Sherali–Adams hierarchy can be used to get
PTAS’s for CSPs, the näıve approach would result in additive error terms, which can be acceptable
for maximization objectives but are intolerable for minimization objectives, such as (⋆). Our
algorithm makes Sherali–Adams relaxations applicable to a wide class of minimization objectives
and has two stages:

• Stage I assigns most of the elements via independent rounding;

• Stage II carefully handles the rest of the points, which we refer to as outliers.

To handle the outliers, we rely on the second objective LPII, which is optimized simultaneously
with the Sherali–Adams relaxation LPI; formally, we minimize max(LPI,LPII) and ensure that it is
upper-bounded by OPT. On the other hand, a solution to LPII simplifies the process of assigning
the outliers to the clusters. See Section 4 for the details.

Practical Algorithm and Experiments In Section 6, we introduce a practical version of our
algorithm based on LPII, which provides a constant-factor approximation to objective (⋆). We run
our experiments on 104 data points and show that our hierarchical clustering objective recovers a
ground-truth clustering better compared to the popular Dasgupta’s objective [Dasgupta, 2016].

3 Application to Hierarchical Clustering

We showcase how our general Weighted Metric Clustering framework (⋆) can be applied to the
problem of finding a hierarchy over clusters rather than a partition. In Hierarchical Clustering
(HC), given a set of points V , the goal is to bijectively map the points on the leaves of a tree T . HC is
a very popular method with a wide range of applications [Leskovec, Rajaraman, and Ullman, 2020].
Recent literature [Dasgupta, 2016, Moseley and Wang, 2017, Cohen-Addad, Kanade, Mallmann-
Trenn, and Mathieu, 2019] introduces a number of HC objectives where, for the hierarchical tree T ,
each pair of elements (u, v) is penalized based on the number of leaves under the Lowest Common
Ancestor (LCA) of u and v in T , denoted as LCAT (u, v) (for literature review, see Appendix F).
Instead of using the number of leaves under the LCA, here we propose an optimization objective
for HC where the penalty term is defined based on the depth of the LCA. For a node v ∈ T , let
h(v) denote the depth of v in the tree, defined as the number of edges on the shortest path from
the root to v (e.g. h(r) = 0 if r is the root node). Our goal is to minimize the following over all
possible binary trees T :

H(T) =
∑

u,v∈V
duv h(LCAT (u, v)) (Depth-HC)

Here d is a metric, and we shall note that HC has been extensively studied for metric spaces [Agar-
wala, Bafna, Farach, Paterson, and Thorup, 1998, Ailon and Charikar, 2005, Dasgupta and Long,
2005]. Objective Depth-HC captures the fact that it is better to separate the distant points early
in the hierarchical structure, i.e. h(LCAT (u, v)) should be small when duv is large. For HC, we
show the following result (proof in Appendix F).

5

Tree T

a

b

c d
T◦ – recovery of T up to depth 2

{a} {} {b} {c, d}

Figure 1: Recovering a tree up to a certain depth

Theorem 3.1. For any metric d, there exists a PTAS for minimizing the objective Depth-HC.

In order to map the HC objective to Weighted Metric Clustering (⋆), we must appropriately
choose matrix A. The main idea is to show that it suffices to recover the tree up to the depth
log(1/ε) (see Figure 1) and build random trees on deeper levels. Let T◦ be a full binary tree
T◦ of depth log(1/ε), and we associate the k = 1/ε leaves ℓ1, . . . , ℓk of T◦ with corresponding
clusters C1, . . . , Ck. For different clusters Ci and Cj , we define Aij as the depth of their LCA, i.e.
h(LCAT◦(ℓi, ℓj)). Note that if u is assigned to Ci and v is assigned to Cj , then the pair (u, v) pays
Aij , regardless of further partitioning of Ci and Cj . For a pair of points in the same cluster Ci,
since a random binary tree splits every edge with probability 1/2 at every level, the expected depth
of the LCA is h(ℓi) +

1
2 + 1

4 + 1
8 + · · · ≤ h(ℓi) + 1, which we select as Aii.

Depth-based objectives are useful in Graph Compression and Vertex Reordering problems [Ragha-
van and Garcia-Molina, 2003, Boldi and Vigna, 2004, Chierichetti et al., 2009, Dhulipala et al.,
2016], where the goal is to find space-efficient labeling schemes for the nodes in the graph. Roughly
speaking, the depth h(LCAT (i, j)) corresponds to the bits needed to represent a vertex in the
graph, and, exploiting the fact that similar nodes tend to have similar sets of neighbors, one can
significantly reduce the bit-complexity of the graph representation. A more in-depth discussion and
the proof of Theorem 3.1 are deferred to Appendix F.

Extensions. We note that our result for objective Depth-HC in Theorem 3.1 also holds for
more general cost functions than the hierarchical clustering objective Depth-HC specified above.
For example, instead of the depth of the lowest-common ancestor, h(LCAT (i, j)), we could also
penalize according to the logarithm of the depth, i.e. log h(LCAT (i, j)), or the square of the depth,
i.e. h2(LCAT (i, j)); our algorithms and proofs would still guarantee a PTAS in these cases. In
fact, any function which depends on the depth subexponentially works. For the formal statement
regarding the more general hierarchical clustering objectives, see Appendix F.

4 Sherali–Adams and Local Probability Distributions

Our (1 + ε)-approximation algorithm for Weighted Metric Clustering uses a Sherali–Adams re-
laxation for the problem. Sherali–Adams [Sherali and Adams, 1990] is a lift-and-project method
for strengthening linear programming (LP) relaxations. In this paper, we will use a “local proba-
bility distribution” approach to Sherali–Adams [de la Vega and Kenyon-Mathieu, 2007, Charikar,
Makarychev, and Makarychev, 2009a]. We also use a method for removing dependencies between
random variables in local distributions, which was developed by Raghavendra and Tan [2012] (see
also Barak, Raghavendra, and Steurer [2011] and Yoshida and Zhou [2014]).

We now describe the Sherali–Adams LP relaxation. For every tuple of points v ∈ V r, where
r ≥ 2 is a fixed integer parameter, we have a set of LP variables that defines a probability dis-
tribution of “labels” on v1, . . . , vr. For every ℓ ∈ {1, . . . , k}r, we introduce a variable Pv

[
v1 ∈

6

Cℓ1 , . . . , vr ∈ Cℓr

]
. Each of these kr variables (sometimes called pseudo-probabilities) lies in [0, 1]

and represents the probability that point vi is assigned to cluster Cℓi for all i.
3 For every v ∈ V k,

the linear programming relaxation has the constraint
∑

ℓ∈{1,...,k}r Pv

[
v1 ∈ Cℓ1 , . . . , vr ∈ Cℓr

]
= 1.

This constraint ensures that in a feasible LP solution, every Pv indeed defines a local probability
distribution on points v1, . . . , vr.

We also add a constraint that guarantees that this probability does not depend on the order of
points v1, . . . , vr. For example, for r = 2, we impose constraint P[a ∈ C1, b ∈ C2] = P[b ∈ C2, a ∈
C1], where a and b are arbitrary points from V . Specifically, for every permutation σ of {1, . . . , k},
we have:

Pv

[
v1 ∈ Cℓ1 , . . . , vr ∈ Cℓr

]
= Pv

[
vσ(1) ∈ Cℓσ1

, . . . , vσk
∈ Cℓσk

]
.

LP variables Pv

[
v1 ∈ Cℓ1 , . . . , vr ∈ Cℓr

]
prescribe probabilities to elementary events

{
v1 ∈ Cℓ1 , . . . , vr ∈

Cℓr

}
and thus define probabilities for all events: for E ⊆ {1, . . . , k}r, we let Pv[v ∈ E] =∑

ℓ∈E Pv

[
v1 ∈ Cℓ1 , . . . , vr ∈ Cℓr

]
. In other words, Pv[v ∈ E] is the probability that labels for

v1, . . . , vr drawn from local distribution P are Cℓ1 , . . . , Cℓr (respectively) with ℓ ∈ E . To avoid
ambiguity, we will use a different notation to denote probabilities associated with our algorithm.
We shall write Pr[v1 ∈ X1, . . . , vr ∈ Xr] to denote the probability that points v1, . . . , vr belong to
random sets X1, . . . , Xr chosen by the algorithm.

An important constraint of the Sherali–Adams relaxation is that all local distributions are locally
consistent, as we explain next. Consider two tuples u and v. Let z be the set of common points
in u and v. Both u and v define marginal probability distributions on cluster labels for points
in z. We require that these marginal distributions be the same. Specifically, we add a constraint
to the linear program that enforces that label distributions on u and v agree on the intersection
z = u ∩ v. We denote the marginal probability distribution on every set z of size at most r by Pz.
If z consists of one point u or two points u,v, we write Pu and Puv, respectively.

We stress that even though all local distributions P are locally consistent, generally speaking,
there is no global distribution of cluster labels that is consistent with all local distributions. We also
note that the size of the Sherali–Adams is exponential in r, since the number of variables equals
nr · kr. Thus, if we want to solve a Sherali–Adams relaxation in polynomial time, the parameter r
must be a constant.

When each variable in a solution to the Sherali–Adams relaxation is equal to 0 or 1, we call
the solution integral. An integral solution corresponds to an actual clustering in which u belongs
to Ci if and only if Pu[u ∈ Ci] = 1. Moreover, Pv

[
v1 ∈ Cℓ1 , . . . , vr ∈ Cℓr

]
= 1 if and only if

v1 ∈ Cℓ1 ,. . . , vr ∈ Cℓr . That is, Pv [v1 ∈ Cℓ1 , . . . , vr ∈ Cℓr] = 1{v1 ∈ Cℓr , . . . , vr ∈ Cℓr}, where
1{E} is the indicator of the event E . We now define the objective function for our Sherali–Adams
relaxation and introduce some additional constraints. We assume that we know the sizes of the
optimal clusters n1 = |C∗

1 |,. . . , nk = |C∗
k |. We additionally assume that we know their centers

c1 ∈ C∗
1 , . . . , ck ∈ C∗

k which guarantee 3-approximation (see Lemma B.2). Note that there are at
most O(n2k) combinations of different ci’s and nj ’s, and hence we can try all possibilities. We use
Π to denote the particular choice of ci’s and nj ’s and call it the clustering profile.

The objective of our linear programming relaxation is the maximum of LPI and LPII under the
constraints above:

minimize LP = max(LPI,LPII), (1)

3Formally, one should think about assigning point vi to Cℓi as of assigning label ℓi to point vi

7

LPI =
1

2

k∑
i=1

k∑
j=1

∑
u,v∈V

Aij duv Puv

[
u ∈ Ci, v ∈ Cj

]
LPII =

1

3

k∑
i=1

∑
u∈V

FΠ(u, i)Pu

[
u ∈ Ci

]
,

FΠ(u, i) =
k∑

j=1

nj aij duci∧j , (2)

where i ∧ j is defined as min(i, j). The first objective LPI is a direct relaxation of the objective
function of Weighted Metric Clustering: in an integral LP solution – when each Puv

[
u ∈ Ci, v ∈ Cj

]
is 0 or 1 – the value of LPI equals the cost of the corresponding combinatorial solution to Weighted
Metric Clustering. Consequently, in the optimal integral solution to the problem, LPI = OPT,
where OPT = cost(C∗

1 , . . . , C
∗
k) is the value of the optimal solution.

The second objective LPII is upper bounded by OPT in the optimal integral solution by
Lemma B.2 when ci’s and nj ’s are guessed correctly. This is due to the fact that for any u ∈ V ,
i ∈ [k], and the correct guess of ni and ci, ni duci is a good approximation of

∑
v∈Cj

duv [de la Vega,

Karpinski, Kenyon, and Rabani, 2003]. Therefore, OPTLPI
≤ OPT and OPTLPII

≤ OPT, where
OPTLPI

and OPTLPII
are the values of LPI and LPII in the optimal solution to our linear program.

Intuitively, LPII is used for bounding the error terms in the analysis and, compared to LPII,
has the following advantages. First, every term involves a single point u (note that other variables
in each term are either guessed or fixed), and hence it’s easy to optimize. Second, LPII refers
to cluster centers instead of clusters themselves, which is important for the case when there are
multiple equivalent solutions to the original problem, e.g. in the case of Min-Uncut. In the analysis,
we often use triangle inequality to bound duv ≤ duc + dcv, with the choice of c being crucial. LPII

forces the center for each cluster, which makes the choice of c clear in each particular case.
Finally, we add capacity constraints to our relaxation, which are satisfied in the integral solution

to Weighted Metric Clustering. For all i ∈ {1, . . . , k}:
∑

u∈V Pu[u ∈ Ci] ≤ ni. These constraints are
important since LPII is a good approximation of (⋆) only if cardinalities are guessed and enforced
correctly.

4.1 Making Point Distributions Nearly Independent

We now define nearly independent local distributions and then describe a procedureMakeIndepen-
dent that transforms local distributions P obtained by solving the Sherali–Adams LP relaxation
into a nearly independent local distributions P∗. This procedure uses the conditional probability
technique for Sherali–Adams [Raghavendra and Tan, 2012]. The main difference between our result
and theirs is that we require that local distributions P∗ (see below) are simultaneously nearly in-
dependent for k sets D1, . . . , Dk, while Raghavendra and Tan [2012] obtain a globally uncorrelated
solution which corresponds to the case when we have only one set A = V . For us, it is crucial to
have sets D1, . . . , Dk in the definition because some sets Di may have size o(n) (e.g.,

√
n). In that

case, the guarantees of the algorithm by Raghavendra and Tan [2012] are not sufficient for us.
First, we introduce some notation. Denote the distribution of pairs u and v in which u and v

are sampled independently with distributions Pu and Pv by Pu ⊗ Pv:

(Pu ⊗ Pv)[u ∈ Ci, v ∈ Cj] = Pu[u ∈ Ci] · Pv[v ∈ Cj].

8

Definition 4.1. Let D1, . . . , Dk be subsets of V . We say that a family of local probability distribu-
tions {P} are (γ, δ)-nearly independent for setsD1, . . . , Dk if the following condition holds: for every
u ∈ V and every j ∈ {1, . . . , k}, for all but γ fraction of v in Dj , we have ∥Pu ⊗ Pv − Pu,v∥TV ≤ δ.
Equivalently, for all u ∈ V and i ∈ [k], the number of elements v ∈ Dj such that ∥Pu⊗Pv−Pu,v∥TV >
δ must be at most γ|Di|. If ∥Pu ⊗ Pv − Pu,v∥TV ≤ δ, we say that u and v are δ-nearly independent
according to Pu,v.

Theorem 4.2. For every δ, γ, η ∈ (0, 1) and integer k > 1, there exists a randomized polynomial-

time procedure that given a solution P to the Sherali–Adams relaxation with r ≥ 2+ k log2 k
2δ2γη

rounds,

outputs a family of local probability distributions {P∗
u}u and {P∗

uv}uv and exit status (“success” or
“failure”) such that

1. If the algorithm succeeds, then P∗ is (γ, δ)-nearly independent.

2. For all u, v ∈ V and i, j ∈ {1, . . . , k},

E [P∗
u[u ∈ Ci]] = Pu[u ∈ Ci]

E [P∗
uv[u ∈ Ci, v ∈ Cj]] = Puv[u ∈ Ci, v ∈ Cj].

3. The algorithm fails with probability at most η.

The goal of algorithm MakeIndependent is to build a (γ, δ)-nearly independent family {P∗}
while preserving the expectation of the LP value. The algorithm builds a sequence of distributions
{P(0)} = {P}, {P(1)}, At iteration t, it finds a point u violating the (γ, δ)-nearly independence
condition, and then conditions local distributions on the event P(t)[u ∈ Ci] for i drawn from

distribution P(t)
u . Loosely speaking, every time we do the conditioning step, we make more pairs

(u, v) nearly independent. We show that a certain measure – entropy – decreases with each iteration
by at least a fixed amount, and hence in approximately r steps, we get nearly independence with
the desired parameters. We provide more details and prove this theorem in Appendix C.

5 Main Algorithm

In this section, we outline our (1+ ε)-approximation algorithm or PTAS (polynomial-time approx-
imation scheme) for the Weighted Metric Clustering problem. We provide full details in Appen-
dices D and E. The pseudocode is provided in Algorithm 1.

Algorithm Outline In the first step, the algorithm guesses the cluster centers {ci} and sizes
{nj}, which we call the clustering profile and denote by Π. Note that all choices of {ci} and
{nj} can be enumerated in polynomial time, and our analysis assumes the correct choice. Then,
the algorithm solves the r-round Sherali–Adams relaxation for Weighted Metric Clustering (see
Section 4) and obtains local distributions P. For constant r, the size of the relaxation is polynomial
in n, and thus it can be solved in polynomial time. We then assign points to clusters using a
two-stage algorithm.

At Stage I, we assign most points to clusters X1, . . . , Xk and place the remaining points, which
we call “outliers”, in set O. We guarantee that the cost of the partial clustering X1, . . . , Xk is
at most (1 + ε)OPT in expectation and each point is an outlier with probability at most ηk (see
Lemma D.2 for the formal statement), where η is a small parameter depending on ε.

9

Algorithm 1: PTAS for Weighted Metric Clustering

input : V – set of points, {duv}u,v∈V – pairwise distances, {Aij}ki,j=1 – inter-cluster costs

1 parameters: r – number of rounds of SA relaxation, η – outlier probability threshold, δ –
fraction of dependent points, γ – independence threshold

2 Guess cluster centers c1, . . . , ck and sizes n1, . . . , nk

3 Let {P} be the r-round solution to SA relaxation for Problem (1)
4 Di = {u ∈ V : Pu[u ∈ Ci] ≥ η} for all i
5 {P∗} = MakeIndependent({P}, {Di}, δ, γ)
6 // Tentative assignment via independent rounding

7 for all u ∈ V do
8 Assign u to Ci with probability P∗[u ∈ Ci]

9 // Stage I: Assigning non-outliers

10 if P∗ is (γ, δ)-nearly independent for D1, . . . , Dk then
11 Xi = Ci ∩Di, O =

⋃
i(Ci \Di)

12 else
13 O = V // Every point is outlier

14 // Stage II: Assigning outliers

15 for all u ∈ O do
16 Assign u to Yi with probability P[u ∈ Ci].

17 return (X1 ∪ Y1, . . . , Xk ∪ Yk)

Algorithm 2: MakeIndependent({P}, {Di}, δ, γ)
input : {P} – r-round solution to SA relaxation, {Di}ki=1 – candidate sets for each

cluster, δ – fraction of dependent points, γ – independence threshold
1 Let {P(0)} be {P}
2 for t = 0, 1, . . . , r − 3 do

3 if {P(t)} is (γ, δ)-nearly independent for sets D1, . . . , Dk (Def. 4.1) then

4 return {P(t)}
5 Let u be a point violating the (γ, δ)-nearly independence condition.

6 Assign u to Ci with probability P(t)[u ∈ Ci].

7 Let {P(t+1)} be {P(t)} conditioned on u ∈ Ci.

8 return {P(r−2)}

At Stage II, we cluster the outliers from set O. For this purpose, we use a variant of the 3-
approximation algorithm, which we provide in Section B. Since the number of outliers is very small,
the cost of clustering them is also small despite the fact that we use a constant factor approximation
for outliers. Finally, we combine the clusterings obtained at Stage I and Stage II and get a clustering
of cost at most (1 + ε)OPT. The algorithm for clustering outliers is discussed in Appendix E.

Stage I We now examine the first stage of the algorithm in more detail. It is inspired by Yoshida
and Zhou [2014] and Raghavendra and Tan [2012]. The general idea is to transform the solution
for the Sherali–Adams relaxation to a family of local distributions {P∗} such that

P∗
uv[u ∈ Ci; v ∈ Cj] ≈ P∗

u[u ∈ Ci] · P∗
v[v ∈ Cj] (3)

10

for most pairs of points. This can be done using the method discussed in the previous section.
Next, we want to randomly and independently assign every point u to cluster i with probability
Pu[u ∈ Ci]. If condition (3) holds for some pair (u, v) and all i, j, then the expected cost this
algorithm pays for clustering pair (u, v),

∑
ij duv Aij Pu

[
u ∈ Ci] · Pv

[
v ∈ Cj

]
, is approximately

equal to the LP cost of this pair,
∑

ij duv Aij Puv

[
u ∈ Ci, v ∈ Cj

]
. The problem, however, is that

condition (3) does not hold for all pairs (u, v). Furthermore, it may happen that the algorithm
creates a very expensive small clusterXi such that for all pairs u, v ∈ Xi we do not have approximate
equality (3). Consequently, the cost of such a cluster cannot be charged to the LP relaxation.

The discussion above leads to the following idea: let us make local distributions not only nearly
independent for most pairs (u, v) but nearly independent for each point u and most v’s in each
cluster the algorithm creates. This is formally stated in Definition 4.1. However, the problem is
that the algorithm does not know in advance what clusters it is going to produce. So, it uses a
proxy for these clusters – sets of candidate points D1, . . . , Dk. Set Di contains points that are
somewhat likely to be assigned to cluster i.

We now summarize Stage I. First, the algorithm solves the Sherali–Adams relaxation. Then,
it defines sets of candidates D1, . . . , Dk, where each Di contains points u for which P[u ∈ Ci] ≥ η
(where η is a small constant depending on ε). It calls algorithm MakeIndependent (described
Section 4.1) with setsD1, . . . , Dk and obtains (γ, δ)-nearly independent local distributions P∗. Next,
it randomly assigns points to clusters using distribution P∗. To make sure that we can pay for each
created cluster Xi, this cluster needs to be a subset of the corresponding candidate set Di. Thus,
if point u is assigned to Xi but u is not in Di, we remove u from Xi and mark u as an outlier.
Stage I returns sets X1, . . . , Xk along with the set of outliers O, which are assigned to clusters at
Stage II. We can now charge the cost of all pairs (u, v) that are nearly independent to the LP
objective. Using triangle inequalities, we can also bound the cost of all other pairs (u, v) in V \O.
We provide all details in Appendix D.

Stage II At Stage II, we assign outliers to clusters. Our approach to dealing with outliers
is somewhat similar to the approach introduced by Makarychev, Makarychev, and Razenshteyn
[2019]. As discussed above, the number of outliers is small, which is one of the main reasons
why their assignment does not significantly change the objective. The outliers are assigned using
independent rounding based on P (instead of P∗ for non-outliers). In Theorem E.3, we analyze
the cost of assigning outliers to clusters. Putting everything together, we prove that our algorithm
provides a PTAS.

Theorem 5.1. For δ = γ = η2ε
9 and r = 2+ k log2 k

2δ2γη
, Algorithm 1 finds clustering with the expected

objective value within (1 + ε)-factor of OPT with probability at least 1− η for any η ≤ ε2

90k2
.

6 Experiments

In this section, we perform experiments on the hierarchical clustering objective (Depth-HC) defined
in Section 3:

H(T) =
∑

u,v∈V
duv h(LCAT (u, v))

11

Figure 2: Comparison of the depth-based objective (Depth-HC) and the Dasgupta’s objective.
Data points correspond to averages over 10 runs, and error bars correspond to the 10% and 90%
quantiles. The experiments are performed on a single-core Intel Xeon 2.2GHz CPU.

For our experiments, we use a simplified version of the algorithm, based on the LPII relaxation
from Section 4, which achieves 3-approximation (Appendix B):

k∑
i=1

k∑
j=1

∑
u∈V

nj Aij duci∧j Pu

[
u ∈ Ci

]
,

where n1, . . . , nk are cluster cardinalities and c1, . . . , ck are cluster centers. This objective can be
optimized efficiently as an instance of a minimum-cost flow problem, while precisely satisfying the
imposed cardinality constraints. We run the algorithm multiple times with different guesses of {ni}
and {ci}, and, since the guesses might be not precise, we improve the resulting solution using local
search.

Datasets We perform evaluation on various hierarchical datasets. In this section, we present
experiments on random subsamples (of sizes 102, 103, and 104) of a well-known 20 Newsgroups
dataset [Lang, 1995], and in Appendix G we present additional experiments on Zebrafish [Wagner
et al., 2018], CIFAR-10 [Krizhevsky and Hinton, 2009], and other datasets. The inputs in 20
Newsgroups are text documents, which we transform to the Euclidean vectors using a pre-trained
language model (see Appendix G for details). Finally, we use the ground-truth hierarchical structure
to obtain a flat clustering based on the top-level split.

Objectives We compare the following objectives:

• Depth-based objective (Depth-HC). Based on the algorithm from Section 3, we approxi-
mate the objective by building a hierarchical tree up to a certain level and building random
trees on the resulting clusters. We select the level ℓ so that the number of clusters 2ℓ is close
to the number of ground-truth clusters.

• Dasgupta’s objective [Dasgupta, 2016], defined as
∑

u<v w(u, v) |LCAT (u, v)|, where
w is the similarity between items. We convert distances to similarities using the standard

RBF kernel: w(x, y) = exp
(
−∥x−y∥2

2

)
. We optimize Dasgupta’s objective using recursive

Min-Cut [Chatziafratis et al., 2020], for which we use METIS [Karypis and Kumar, 1995].

12

Evaluation and Results We evaluate how well the above objectives recover the ground-truth
clustering information using the dendrogram purity objective:

DP (T) =
1∑m

i=1 |Ci|2
m∑
i=1

∑
u,v∈Ci

|Ci ∩ LCAT (u, v)|
|LCAT (u, v)|

,

where C1, . . . , Cm are the ground-truth clusters. Intuitively, this objective measures how well-
separated are the ground-truth clusters in the tree.

Figure 2 shows that (Depth-HC) objective achieves significantly better dendrogram purity com-
pared with Dasgupta’s objective. Moreover, the complexity of our algorithm is noticeably slower,
and, with the increase in the number of data points, the gap in quality increases, exceeding the
factor of two for 104 points. To conclude, these experiments demonstrate the usefulness of our
hierarchical objective as well as the existence of efficient approaches for its optimization.

We provide additional experiments in Appendix G.

7 Conclusion

In this paper, we describe a polynomial-time approximation scheme (PTAS) for the Weighted Met-
ric Clustering problem based on the Sherali–Adams relaxation. This in turn provides a PTAS for
many important special cases, including metric clustering on manifolds and our novel depth-based
hierarchical clustering objective. In our experiments, we compare our hierarchical clustering ob-
jective with Dasgupta’s objective and show that our objective recovers the ground-truth clustering
information more precisely.

An interesting open question would be handling cardinality constraints, which covers important
applications such as variations of the sparsest cut or objectives with balance constraints. Another
interesting variation of the objective is a sum of multiple objectives of the form (⋆).

Acknowledgements

Konstantin Makarychev is supported by the NSF Awards CCF-1955351, CCF-1934931, and EECS-
2216970.

References

Richa Agarwala, Vineet Bafna, Martin Farach, Mike Paterson, and Mikkel Thorup. On the approx-
imability of numerical taxonomy (fitting distances by tree metrics). SIAM Journal on Computing,
28(3):1073–1085, 1998.

Nir Ailon and Noga Alon. Hardness of fully dense problems. Information and Computation, 205
(8):1117–1129, 2007.

Nir Ailon and Moses Charikar. Fitting tree metrics: Hierarchical clustering and phylogeny. In 46th
Annual IEEE Symposium on Foundations of Computer Science (FOCS’05), pages 73–82. IEEE,
2005.

Mikhail Alekhnovich, Sanjeev Arora, and Iannis Tourlakis. Towards strong nonapproximability
results in the lovász-schrijver hierarchy. computational complexity, 20:615–648, 2011.

13

Noga Alon and Assaf Naor. Approximating the cut-norm via grothendieck’s inequality. In Proceed-
ings of the 36th annual ACM symposium on Theory of computing, pages 72–80, 2004.

Noga Alon, W Fernandez de la Vega, Ravi Kannan, and Marek Karpinski. Random sampling and
approximation of max-csp problems. In Proceedings of the thiry-fourth annual ACM symposium
on Theory of computing, pages 232–239, 2002.

Noga Alon, Yossi Azar, and Danny Vainstein. Hierarchical clustering: A 0.585 revenue approxima-
tion. In Conference on Learning Theory, pages 153–162. PMLR, 2020.

Sanjeev Arora, David R. Karger, and Marek Karpinski. Polynomial time approximation schemes
for dense instances of np-hard problems. J. Comput. Syst. Sci., 58(1):193–210, 1999. doi: 10.
1006/jcss.1998.1605. URL https://doi.org/10.1006/jcss.1998.1605.

Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine learning, 56(1):
89–113, 2004.

Boaz Barak, Prasad Raghavendra, and David Steurer. Rounding semidefinite programming hierar-
chies via global correlation. In 2011 IEEE 52nd Annual Symposium on Foundations of Computer
Science, pages 472–481. IEEE, 2011.

Yair Bartal, Moses Charikar, and Danny Raz. Approximating min-sum k-clustering in metric
spaces. In Proceedings of the thirty-third annual ACM symposium on Theory of computing, pages
11–20, 2001.

Cristina Bazgan, Wenceslas Fernandez de la Vega, and Marek Karpinski. Polynomial time approx-
imation schemes for dense instances of minimum constraint satisfaction. Random Struct. Algo-
rithms, 23(1):73–91, 2003. doi: 10.1002/rsa.10072. URL https://doi.org/10.1002/rsa.10072.

Paolo Boldi and Sebastiano Vigna. The webgraph framework i: compression techniques. In Pro-
ceedings of the 13th international conference on World Wide Web, pages 595–602, 2004.

Moses Charikar and Vaggos Chatziafratis. Approximate hierarchical clustering via sparsest cut
and spreading metrics. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 841–854. SIAM, 2017.

Moses Charikar and Anthony Wirth. Maximizing quadratic programs: Extending grothendieck’s
inequality. In 45th Annual IEEE Symposium on Foundations of Computer Science, pages 54–60.
IEEE, 2004.

Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with qualitative infor-
mation. Journal of Computer and System Sciences, 71(3):360–383, 2005.

Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Integrality gaps for sherali-adams
relaxations. In Proceedings of the forty-first annual ACM symposium on Theory of computing,
pages 283–292, 2009a.

Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Near-optimal algorithms for
maximum constraint satisfaction problems. ACM Transactions on Algorithms (TALG), 5(3):
1–14, 2009b.

Moses Charikar, Mohammad Taghi Hajiaghayi, Howard Karloff, and Satish Rao. ℓ22 spreading
metrics for vertex ordering problems. Algorithmica, 56(4):577–604, 2010.

14

https://doi.org/10.1006/jcss.1998.1605
https://doi.org/10.1002/rsa.10072

Vaggos Chatziafratis, Grigory Yaroslavtsev, Euiwoong Lee, Konstantin Makarychev, Sara Ahma-
dian, Alessandro Epasto, and Mohammad Mahdian. Bisect and Conquer: Hierarchical Clustering
via Max-Uncut Bisection. In Proceedings of the 33rd International Conference on Artificial In-
telligence and Statistics, pages 3121–3132. PMLR, June 2020.

Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael Mitzenmacher, Alessandro Panconesi,
and Prabhakar Raghavan. On compressing social networks. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 219–228, 2009.

Eden Chlamtac and Madhur Tulsiani. Convex relaxations and integrality gaps. Handbook on
semidefinite, conic and polynomial optimization, pages 139–169, 2012.

Vincent Cohen-Addad, Varun Kanade, Frederik Mallmann-Trenn, and Claire Mathieu. Hierarchical
clustering: Objective functions and algorithms. Journal of the ACM, 66(4):1–42, 2019.

Vincent Cohen-Addad, Debarati Das, Evangelos Kipouridis, Nikos Parotsidis, and Mikkel Thorup.
Fitting distances by tree metrics minimizing the total error within a constant factor. In 2021
IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 468–479.
IEEE, 2022a.

Vincent Cohen-Addad, Euiwoong Lee, and Alantha Newman. Correlation clustering with sherali-
adams. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS),
pages 651–661. IEEE, 2022b.

Marie-Christine Costa, Lucas Létocart, and Frédéric Roupin. Minimal multicut and maximal
integer multiflow: A survey. European Journal of Operational Research, 162(1):55–69, April
2005. ISSN 0377-2217. doi: 10.1016/j.ejor.2003.10.037.

E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis. The
complexity of multiterminal cuts. SIAM Journal on Computing, 23(4):864–894, 1994. doi: 10.
1137/S0097539792225297. URL https://doi.org/10.1137/S0097539792225297.

Sanjoy Dasgupta. A cost function for similarity-based hierarchical clustering. In Proceedings of the
forty-eighth annual ACM symposium on Theory of Computing, pages 118–127, 2016.

Sanjoy Dasgupta and Philip M Long. Performance guarantees for hierarchical clustering. Journal
of Computer and System Sciences, 70(4):555–569, 2005.

W Fernandez de la Vega, Marek Karpinski, Claire Kenyon, and Yuval Rabani. Approximation
schemes for clustering problems. In Proceedings of the thirty-fifth annual ACM symposium on
Theory of computing, pages 50–58, 2003.

Wenceslas Fernandez de la Vega and Claire Kenyon-Mathieu. Linear programming relaxations of
maxcut. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 53–61, 2007.

Wenceslas Fernandez de la Vega, Marek Karpinski, and Claire Kenyon. Approximation schemes for
metric bisection and partitioning. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2004, New Orleans, Louisiana, USA, January 11-14, 2004, pages
506–515. SIAM, 2004. URL http://dl.acm.org/citation.cfm?id=982792.982864.

15

https://doi.org/10.1137/S0097539792225297
http://dl.acm.org/citation.cfm?id=982792.982864

Laxman Dhulipala, Igor Kabiljo, Brian Karrer, Giuseppe Ottaviano, Sergey Pupyrev, and Alon
Shalita. Compressing graphs and indexes with recursive graph bisection. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
1535–1544, 2016.

W Fernandez de la Vega. Max-cut has a randomized approximation scheme in dense graphs.
Random Structures & Algorithms, 8(3):187–198, 1996.

Alan M. Frieze and Ravi Kannan. The regularity lemma and approximation schemes for dense
problems. In 37th Annual Symposium on Foundations of Computer Science, FOCS ’96, Burling-
ton, Vermont, USA, 14-16 October, 1996, pages 12–20. IEEE Computer Society, 1996. doi:
10.1109/SFCS.1996.548459. URL https://doi.org/10.1109/SFCS.1996.548459.

Ioannis Giotis and Venkatesan Guruswami. Correlation clustering with a fixed number of clusters.
arXiv preprint cs/0504023, 2005.

Johan H̊astad. Some optimal inapproximability results. Journal of the ACM (JACM), 48(4):
798–859, 2001.

Samuel B Hopkins, Tselil Schramm, and Luca Trevisan. Subexponential lps approximate max-
cut. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages
943–953. IEEE, 2020.

P. Indyk. A sublinear time approximation scheme for clustering in metric spaces. In 40th Annual
Symposium on Foundations of Computer Science, pages 154–159, October 1999. doi: 10.1109/
SFFCS.1999.814587.

Viggo Kann, S. Khanna, Jens Lagergren, and A. Panconesi. On the hardness of approximating
max k-cut and its dual. In Israeli Symposium on Theoretical Computer Science, 1996.

George Karypis and Vipin Kumar. Metis-unstructured graph partitioning and sparse matrix or-
dering system, version 2.0. University of Minnesota, 1995.

Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the thiry-fourth
annual ACM symposium on Theory of computing, pages 767–775, 2002.

Subhash Khot and Assaf Naor. Approximate kernel clustering. In 2008 49th Annual IEEE Sym-
posium on Foundations of Computer Science, pages 561–570. IEEE Computer Society, 2008.

Subhash Khot and Assaf Naor. Sharp kernel clustering algorithms and their associated grothendieck
inequalities. Random Structures & Algorithms, 42(3):269–300, 2013.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

Ken Lang. NewsWeeder: Learning to Filter Netnews. In Machine Learning Proceedings 1995, pages
331–339. Morgan Kaufmann, San Francisco (CA), January 1995. ISBN 978-1-55860-377-6. doi:
10.1016/B978-1-55860-377-6.50048-7.

Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining of massive data sets. Cam-
bridge university press, 2020.

L. Lovász and A. Schrijver. Cones of Matrices and Set-Functions and 0–1 Optimization. SIAM
Journal on Optimization, 1(2):166–190, May 1991. ISSN 1052-6234. doi: 10.1137/0801013.

16

https://doi.org/10.1109/SFCS.1996.548459

Konstantin Makarychev, Yury Makarychev, and Ilya Razenshteyn. Performance of Johnson-
Lindenstrauss transform for k-means and k-medians clustering. In Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, pages 1027–1038. Association for Comput-
ing Machinery, June 2019. doi: 10.1145/3313276.3316350.

Balázs F Mezei, Marcin Wrochna, and Stanislav Živnỳ. Ptas for sparse general-valued csps. ACM
Transactions on Algorithms, 19(2):1–31, 2023.

Benjamin Moseley and Joshua Wang. Approximation Bounds for Hierarchical Clustering: Average
Linkage, Bisecting K-means, and Local Search. In Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017.

Benjamin Moseley, Sergei Vassilvtiskii, and Yuyan Wang. Hierarchical clustering in general metric
spaces using approximate nearest neighbors. In International Conference on Artificial Intelligence
and Statistics, pages 2440–2448. PMLR, 2021.

Yu Nesterov. Semidefinite relaxation and nonconvex quadratic optimization. Optimization methods
and software, 9(1-3):141–160, 1998.

Sriram Raghavan and Hector Garcia-Molina. Representing web graphs. In Proceedings 19th Inter-
national Conference on Data Engineering, pages 405–416. IEEE, 2003.

Prasad Raghavendra and Ning Tan. Approximating csps with global cardinality constraints using
sdp hierarchies. In Proceedings of the 33rd annual ACM-SIAM symposium on Discrete Algo-
rithms, pages 373–387. SIAM, 2012.

Miguel Romero, Marcin Wrochna, and Stanislav Živnỳ. Treewidth-pliability and ptas for max-
csps. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
473–483. SIAM, 2021.

Hanif D Sherali and Warren P Adams. A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems. SIAM Journal on Discrete
Mathematics, 3(3):411–430, 1990.

Le Song, Alex Smola, Arthur Gretton, and Karsten M Borgwardt. A dependence maximization
view of clustering. In Proceedings of the 24th international conference on Machine learning, pages
815–822, 2007.

Johan Thapper and Stanislav Zivny. The power of sherali–adams relaxations for general-valued
csps. SIAM Journal on Computing, 46(4):1241–1279, 2017.

Daniel E. Wagner, Caleb Weinreb, Zach M. Collins, James A. Briggs, Sean G. Megason, and
Allon M. Klein. Single-cell mapping of gene expression landscapes and lineage in the zebrafish
embryo. Science, 360(6392):981–987, June 2018. doi: 10.1126/science.aar4362.

Mihalis Yannakakis. Expressing combinatorial optimization problems by linear programs. In Pro-
ceedings of the 20th annual ACM symposium on Theory of computing, pages 223–228, 1988.

Yuichi Yoshida and Yuan Zhou. Approximation schemes via sherali-adams hierarchy for dense
constraint satisfaction problems and assignment problems. In Innovations in Theoretical Com-
puter Science, 2014, pages 423–438. ACM, 2014. doi: 10.1145/2554797.2554836. URL https:

//doi.org/10.1145/2554797.2554836.

17

https://doi.org/10.1145/2554797.2554836
https://doi.org/10.1145/2554797.2554836

A Background on CSPs

Maximization vs. Minimization There is an important distinction between minimization
and maximization clustering objectives, in that minimization versions are often much harder to
approximate compared with their maximization counterparts. This is because in minimization
problems the error must be compared against a potentially very small optimum value, which might
even be equal to 0. On the other hand, for Max-CSPs a trivial – yet often a reasonably good
solution – is a random assignment, which yields constant-factor approximations.4 In contrast, for
Min-CSPs, even obtaining polylog n approximations has been challenging. Historically, this led
researchers to first try to obtain Polynomial Time Approximation Schemes (PTAS) for Max-CSPs.
Unfortunately, even certain Max-CSPs like Max-Cut or Max-3-SAT cannot have PTAS’s unless
P = NP [Khot, 2002, H̊astad, 2001], leading researchers to consider restrictions to the inputs.
A common approach is to try to find a PTAS under well-motivated restrictions, e.g. assuming
that the input is either dense or comes from a metric. To the best of our knowledge, both of the
Weighted Metric Clustering formulations mentioned above have not been studied under density or
metric assumptions.

Density of CSPs Fernandez de la Vega [1996], Arora, Karger, and Karpinski [1999], Frieze and
Kannan [1996] show that there exists a PTAS for Max-Cut (and various other Max-CSPs) if the
graph is dense, i.e., it has Ω(n2) edges. These works led to a series of approximation results for the
properties of dense Max-r-CSPs instances of arity r. Roughly speaking, “dense” means that there
are Ω(nr) constraints (other slightly different notions of density have also been considered). For
example, a prominent dense problem is a version of the Correlation Clustering problem [Bansal,
Blum, and Chawla, 2004], where the input is assumed to be a complete graph with + or − edges.
Correlation Clustering with fixed number of clusters k is yet another example where obtaining
PTAS for minimization was much more challenging than maximization [Giotis and Guruswami,
2005]; in fact, if k is allowed to be part of the input, the minimization version is APX-hard (and
hence unlikely to have PTAS), even though the maximization version admits a PTAS [Charikar,
Guruswami, and Wirth, 2005]. For more hardness results for minimization problems, even on dense
instances, see Ailon and Alon [2007].

PTAS for Max vs Min CSPs. It is important to note that due of the density, a random
assignment satisfies a constant fraction of constraints, so dense Max-r-CSPs have optimum value
Θ(nr). This implies that in order to get a PTAS for dense Max-r-CSPs, we can design an
algorithm with additive error εnr [Alon, de la Vega, Kannan, and Karpinski, 2002]. In contrast, for
minimization problems, algorithms with additive error are insufficient since the optimal value can
be very small or even 0. In fact, there are many Min-CSPs, such as Min-3-Uncut, that provably
do not have PTAS, even under extreme density assumptions. Somewhat surprisingly, Bazgan et al.
[2003] gave a PTAS for dense minimization versions of SAT formulas like Min-r-SAT.

Unified PTAS for Max-CSPs. The aforementioned line of research led to significant algorith-
mic developments (smooth integer programs, random sampling and exhaustive search, connections
to low-degree polynomials etc.) and culminated in a paper by Yoshida and Zhou [2014] which
unified all these results by providing a single PTAS that worked for all Max-CSPs, based on the
Sherali–Adams linear programming (LP) relaxation hierarchy. Their main result states that for

4For example, random assignment for 3-SAT obtains a 7
8
-approximation, but no approximation exists for the

minimum 3-UNSAT problem unless P = NP .

18

any ε > 0, Sherali–Adams LP with roughly O
(
1/ε2

)
rounds gives a (1− ε)-approximation to dense

Max-r-CSPs.

B 3-Approximation Algorithm

In this Section, we first present a 3-approximation algorithm for Weighted Metric Clustering. This
result will be then used in the analysis of the outlier assignment step in Algorithm 1, namely for
bounding the error terms. In the following sections, we use notation W(Ci, Cj) =

∑
u∈Ci

∑
v∈Cj

duv.
Our 3-approximation algorithm relies on the following observation. Suppose that C∗

1 , . . . , C
∗
k is

the optimal clustering. Then, we can select centers c1, . . . , ck in C∗
1 , . . . , C

∗
k so that the distance

between every point u ∈ Ci and v ∈ Cj approximately equals duci∧j +dvci∧j , where i∧ j = min(i, j).
Our approximation algorithm finds centers c1, . . . , ck by trying all possible combinations and obtains
an approximate solution by finding the minimum cost assignment of points in V to centers c1, . . . , ck.

First, we prove Lemmas B.1 and B.2 that upper- and lower-bound the cost of a clustering in
terms of its clustering profile, which is defined as follows. Consider a set of points c1, . . . , ck ∈ V
and natural numbers n1, . . . nk that add up to n. We say that the set of pairs Π = {(ci, ni)}ki=1 is
a clustering profile. Let

FΠ(u, i) = 2
k∑

j=1

nj Aij duci∧j . (4)

Lemma B.1. For every partitioning C1, . . . , Ck of V , and an arbitrary set of centers c1, . . . , ck ∈ V ,
we have

cost(C1, . . . , Ck) ≤
k∑

i=1

∑
u∈Ci

FΠ(u, i), (5)

where FΠ(u, i) is defined as above, ni = |Ci|, and Π is the set of pairs (ci, ni).

Proof. For u ∈ Ci and v ∈ Cj , we have duv ≤ duci∧j + dci∧jv. Thus,

W(Ci, Cj) =
∑
u∈Ci

∑
v∈Cj

duv ≤
∑
u∈Ci

∑
v∈Cj

(
duci∧j + dci∧jv

)
= 2

∑
u∈Ci

∑
v∈Cj

duci∧j = 2nj

∑
u∈Ci

duci∧j .

Substituting this into cost, we get

cost(C1, . . . , Ck) =

k∑
i=1

k∑
j=1

AijW(Ci, Cj) ≤
k∑

i=1

k∑
j=1

Aij2nj

∑
u∈Ci

duci∧j =

k∑
i=1

∑
u∈Ci

FΠ(u, i).

Lemma B.2. For every partitioning C1, . . . , Ck of V , there exist centers c1 ∈ C1,. . . , ck ∈ Ck such
that

k∑
i=1

∑
u∈Ci

FΠ(u, i) ≤ 3 · cost(C1, . . . , Ck), (6)

where FΠ(u, i) is defined as above, ni = |Ci|, and Π is the set of pairs (ci, ni).

Proof. Consider a random set of centers c1, . . . , ck, where each ci is selected uniformly and inde-
pendently in Ci. Let Π = {(ci, ni)}. We show that

EΠ

 k∑
i=1

∑
u∈Ci

FΠ(u, i)

 ≤ 3 · cost(C1, . . . , Ck).

19

Consequently, for some realization of c1, . . . , ck, inequality (6) holds. Let us represent FΠ(u, i) in
the following form:

FΠ(u, i) =

niAii duci + 2
i−1∑
j=1

nj Aij ducj

︸ ︷︷ ︸

F I
Π(u,i)

+

niAii duci + 2
k∑

j=i+1

nj Aij duci

︸ ︷︷ ︸

F II
Π(u,i)

.

We separately upper-bound EΠ

[∑k
i=1

∑
u∈Ci

F I
Π(u, i)

]
and EΠ

[∑k
i=1

∑
u∈Ci

F II
Π(u, i)

]
.

I. By definition of cost,

cost(C1, . . . , Ck) =
k∑

i=1

k∑
j=1

∑
u∈Ci

∑
v∈Cj

Aij duv

=
k∑

i=1

∑
u∈Ci

∑
v∈Ci

Aii duv + 2

i−1∑
j=1

∑
v∈Cj

Aij duv

 .

Let us fix i ∈ [k] and u ∈ Ci. Since cj is a random point in Cj , we have
∑

v∈Cj
Aij duv =

njEΠ

[
Aij ducj

]
. Hence,

∑
v∈Ci

Aii duv + 2

i−1∑
j=1

∑
v∈Cj

Aij duv = niEΠ [Aii duci] + 2

i−1∑
j=1

njEΠ

[
Aij ducj

]
= EΠ

[
F I
Π(u, i)

]
.

Taking the summation over all i ∈ [k] and u ∈ Ci, we get

EΠ

 k∑
i=1

∑
u∈Ci

F I
Π(u, i)

 = cost(C1, . . . , Ck).

II. We have

F II
Π(u, i) = niAii duci + 2

k∑
j=i+1

nj Aij duci .

For every j > i and v ∈ Cj , we upper bound duci using the triangle inequality duci ≤ duv + dvci .
We have

EΠ

∑
u∈Ci

nj Aij duci

 ≤ EΠ

∑
u∈Ci

∑
v∈Cj

Aij (duv + dvci)

=

1

ni

∑
u′∈Ci

∑
u∈Ci

∑
v∈Cj

Aij

(
duv + dvu′

)
= 2

∑
u∈Ci

∑
v∈Cj

Aij duv.

Hence,

EΠ

 k∑
i=1

∑
u∈Ci

F II
Π (u, i)

 ≤ 2

k∑
i=1

∑
u∈Ci

1
2

∑
v∈Ci

Aii duv +
∑
j>i

∑
v∈Cj

Aij duv

 = 2 · cost(C1, . . . , Ck).

20

Combining bounds for F I
Π and F II

Π, we get

EΠ

 k∑
i=1

∑
u∈Ci

FΠ(u, i)

 ≤ cost(C1, . . . , Ck) + 2 · cost(C1, . . . , Ck) = 3 · cost(C1, . . . , Ck).

We now use Lemma B.1 and Lemma B.2 to get a 3-approximation for Weighted Metric Clus-
tering.

Theorem B.3. For every fixed integer k > 1, there exists a polynomial-time 3-approximation
algorithm for Weighted Metric Clustering.

Proof. Let C∗
1 , . . . , C

∗
k be the optimal solution for the problem. Our algorithm guesses the sizes of

the optimal clusters {ni} and their centers {ci} such that

k∑
i=1

∑
u∈Ci

FΠ(u, i) ≤ 3 · cost(C∗
1 , . . . , C

∗
k). (7)

The existence of such centers c1, . . . , ck is guaranteed by Lemma 6. The algorithm then finds the
minimum cost matching between points in V and k clusters C1, . . . , Ck. Every cluster Ci is matched
with ni points. The cost of assigning point u to cluster Ci equals FΠ(u, i). The obtained set of
clusters C1, . . . , Ck is a solution for the Minimum Kernel Clustering Problem.

Observe that if we assigned every point u to the cluster it belongs to in the optimal solution,
then the cost of the matching would be upper bounded by 3 ·cost(C∗

1 , . . . , C
∗
k) (see Equation (7)).

Thus, the cost of the optimal matching is also upper bounded by 3·cost(C∗
1 , . . . , C

∗
k). By Lemma 5,

we have

cost(C1, . . . , Ck) ≤
k∑

i=1

∑
u∈Ci

FΠ(u, i) ≤ 3 · cost(C∗
1 , . . . , C

∗
k).

C Proof of Theorem 4.2

We now describe an algorithm for transforming local distributions into nearly independent local
distributions. Our algorithm is based on Algorithm 4.4 from the paper by Raghavendra and Tan
[2012]. Note that the running time of the algorithm is exponential in δ, γ, η and k.

Algorithm 2 provides a pseudocode for our algorithm, which iteratively updates distribution P
until it is (γ, δ)-independent. Initially, P(0) = P. At every step t ∈ {0, . . . , r − 3}, the algorithm

checks if P(t) is already (γ, δ)-independent. If it is, the algorithm returns {P(t)
uv}, and we say that

the algorithm succeeded.
On the other hand, if P(t) is not (γ, δ)-independent, we consider two cases. If r < t − 2, the

algorithm finds point wt and set Dst that violate the (γ, δ)-independence requirement, i.e.

|{v ∈ Dst : ∥Pwt ⊗ P∗
v − P∗

wt,v∥TV > δ}| > γ|Dst |

It then assigns wt to a cluster based on Pwt . Formally, it then picks a random label ℓt ∈ [k] with
probability Pwt [wt ∈ Cjt] and defines new local distributions P(t+1) as follows: for v ∈ V r−t−1 and
b ∈ [k]r−t−1,

P(t+1)
v

[
v1 ∈ Cb1 , . . . ,vr−t−1 ∈ Cbr−t−1

]
=

P(t)
v

[
v1 ∈ Cb1 , . . . ,vr−t−1 ∈ Cbr−t−1 , wt ∈ Cℓt

]
P(t)
v [wt ∈ Cℓt]

,

21

The expression on the right-hand side is the conditional probability of the event v1 ∈
Cb1 , . . . ,vr−t−1 ∈ Cbr−t−1 given that wt ∈ Cjt . We denote this conditional probability by

P(t)
v

[
v1 ∈ Cb1 , . . . ,vr−t−1 ∈ Cbr−t−1 | wt ∈ Cℓt

]
.

If the algorithm didn’t reach an (γ, δ)-independent distribution after r − 2 iterations, the algo-

rithm returns {P(r−2)
uv }, and we say that the algorithm failed.

We restate Theorem 4.2, which analyzes our algorithm.

Theorem 4.2. For every δ, γ, η ∈ (0, 1) and integer k > 1, there exists a randomized polynomial-

time procedure that given a solution P to the Sherali–Adams relaxation with r ≥ 2+ k log2 k
2δ2γη

rounds,

outputs a family of local probability distributions {P∗
u}u and {P∗

uv}uv and exit status (“success” or
“failure”) such that

1. If the algorithm succeeds, then P∗ is (γ, δ)-nearly independent.

2. For all u, v ∈ V and i, j ∈ {1, . . . , k},

E [P∗
u[u ∈ Ci]] = Pu[u ∈ Ci]

E [P∗
uv[u ∈ Ci, v ∈ Cj]] = Puv[u ∈ Ci, v ∈ Cj].

3. The algorithm fails with probability at most η.

Proof. We now analyze Algorithm 2. If the algorithm succeeds, then the resulting family of local
distributions P∗ = P(t) is (γ, δ)-independent. Thus, we need to show items (2) and (3). Item (2)

holds because P(t)
u and P(t)

uv are (as we prove below) martingales. In fact, one can think of P(t)
u and

P(t)
uv as of Doob martingales. Indeed,

E
[
P(t+1)
u [u ∈ Ci] | P(t)

]
=

k∑
j=1

P(t)
u,wt [u ∈ Ci; wt ∈ Cj]

Pu,wt [wt ∈ Cj]
Pr[ℓt = j | P(t)].

Using that Pr[ℓt = j | P(t)] = Pwt [wt ∈ Cj] = Pu,wt [wt ∈ Cj], we get

E
[
P(t+1)
u [u ∈ Ci] | P(t)

]
=

k∑
j=1

P(t)
u,wt

[u ∈ Ci; wt ∈ Cj] = P(t)
u [u ∈ Ci].

Similarly,

E
[
P(t+1)
uv [u ∈ Ci; v ∈ Cj] | P(t)

]
= P(t)

uv [u, v ∈ Ci].

We next bound the probability that algorithm MakeIndependent fails. To this end, we define
the following function:

Φ(t) =
1

k

k∑
s=1

Avgv∈Ds

(
−

k∑
i=1

P(t)
v [v ∈ Ci] log2 P(t)

v [v ∈ Ci]

)
.

Observe that the expression in the round brackets above is the entropy of the distribution Pv.
It is always non-negative. It is also upper bounded by log2 k because each v can take k distinct
values – labels for sets C1, . . . , Ck. Thus, Φ(t) ≤ log2 k. Next, we will show that at every step of
MakeIndependent, Φ(t) is decreased by at least 2δ2γ/k in expectation. Let

∆Φ(t) = Φ(t)− Φ(t+ 1).

22

Lemma C.1. If the algorithm does not succeed by step t (where t < r − 2), then

E
[
∆Φ(t) | P(t)

]
≥ 2δ2γ

k
.

We first prove an auxiliary claim.

Claim C.2. Consider two distributed random variables X and Y . Denote their joint distribution
by Qxy and their marginal distributions by Qx and Qy, respectively. Let Y ′ be an independent
random variable having distribution Qy. Then,

H(X)− EY ′

[
H(X | Y = Y ′)

]
= DKL (Qxy ∥ Qx ⊗Qy) ,

where H(X) is the entropy of X, H(X | Y = Y ′) is the conditional entropy, and DKL (· ∥ ·) is the
Kullback—Leibler (KL) divergence.

Proof. Consider the mutual information I(X;Y) of random variables X and Y . On the one hand,
I(X;Y) = H(X)−H(X | Y), and on the other hand, I(X,Y) = DKL (Qxy ∥ Qx ⊗Qy). Thus,

EY ′

[
H(X | Y = Y ′)

]
= H(X | Y) = H(X)−DKL (Qxy ∥ Qx ⊗Qy) .

Proof of Claim C.1. Consider the t-th step of the algorithm. Suppose that P (t) is not yet (γ, δ)-
nearly independent. In this case, the algorithm picks point wt and set Dst for which∣∣∣{v ∈ Dst : ∥P(t)

wt
⊗ P(t)

v − P(t)
wt,v∥TV > δ

}∣∣∣ > γ|Dst |.

By Pinsker’s inequality, for every v, we have

DKL

(
P(t)
wt,v ∥ P(t)

wt
⊗ P(t)

v

)
≥ 2∥P(t)

wt
⊗ P(t)

v − P(t)
wt,v∥

2
TV ,

Thus, for the chosen wt and Dst , we have∣∣∣{v ∈ Dst : DKL

(
P(t)
wt,v ∥ P(t)

wt
⊗ P(t)

v

)
≥ 2δ2

}∣∣∣ > γ|Dst |.

Hence,

Avgv∈Dst
DKL

(
P(t)
wt,v ∥ P(t)

wt
⊗ P(t)

v

)
> 2δ2γ. (8)

We are now ready to bound Φ(t). Write,

∆Φ(t) =
1

k

k∑
s=1

Avgv∈Ds

(
−

k∑
i=1

P(t)
v [v ∈ Ci] log2 P(t)

v [v ∈ Ci] +
k∑

i=1

P(t+1)
v [v ∈ Ci] log2 P(t+1)

v [v ∈ Ci]

)
.

The expression in the brackets is the difference between the entropy of distribution P(t)
v and P(t+1)

v .

Distribution P(t+1)
v is the conditional distribution P(t+1)

vwt given wt ∈ Ci. Thus, by Claim C.2,

−
k∑

i=1

P(t)
v [v ∈ Ci] log2 P(t)

v [v ∈ Ci]+
k∑

i=1

P(t+1)
v [v ∈ Ci] log2 P(t+1)

v [v ∈ Ci] ≥ DKL

(
P(t)
wt,v ∥ P(t)

wt
⊗ P(t)

v

)
.

Consequently,

∆Φ(t) ≥ 1

k

k∑
s=1

Avgv∈Ds
DKL

(
P(t)
wt,v ∥ P(t)

wt
⊗ P(t)

v

)
.

Using inequality (8) and that DKL is always non-negative, we conclude that Φ(t) ≥ 2δ2γ/k.

23

Let T be the last step of algorithm MakeIndependent. By Lemma C.1, Φ(t) + t · (2δ2γ/k) is
a supermartingale. Thus,

E
[
T · 2δ

2γ

k

]
≤ E

[
T−1∑
i=0

∆Φ(t)

]
= E [Φ(0)− Φ(T)] ≤ log2 k,

here, we are using that T is a stopping time, Φ(0) ≤ log2 k, and Φ(T) ≥ 0. We have

E [T] ≤ k log2 k

2δ2γ
.

By Markov’s inequality,

Pr

[
T ≥ k log2 k

2δ2γη

]
≤ η.

D Main Algorithm

In this section, we present our main algorithm for Metric Kernel Clustering. We provide pseudocode
for the algorithm in Figure 1. The algorithm first guesses centers ci and cluster sizes ni as described
in the previous section. Then, it solves the Sherali–Adams relaxation and obtains local probability
distributions {P}. It uses these local probability distributions to tentatively assign points in V to
clusters C1, . . . , Ck. It also marks some points as outliers and adds them to set O. Finally, the
algorithm leaves tentative cluster assignments intact for non-outlier points and assigns new clusters
to outlier points.

Algorithm 1 describes the algorithm for finding a partial clusteringX1, . . . , Xk and set of outliers
O. The algorithm first finds a solution to the Sherali–Adams (SA) relaxation defined in Section 4.
Denote the collection of local distributions by {P}. Using these distributions, the algorithm iden-
tifies a set of candidate points for every cluster Ci:

Di = {u ∈ V : Pu[u ∈ Ci] ≥ η},

where η is the parameter of the algorithm. Loosely speaking, Di is the set of points that are
somewhat likely to be assigned to cluster Ci by the Sherali–Adams relaxation. The algorithm then
runs function MakeIndependent with parameters D1, . . . , Dk (see Section 4.1). This function
returns a family of new local distributions P∗

u and P∗
uv that are (γ, δ)-nearly independent (see

Definition 4.1) if MakeIndependent does not fail. Our algorithm now independently assigns
every point u label lu ∈ {1, . . . , k} with probability P∗

u[u ∈ Clu]. We call this assignment a tentative
assignment, and we declare point u an outlier if u is tentatively assigned to cluster Ci (i.e., lu = i)
but u /∈ Di. Also, in the unlikely event that MakeIndependent failed, the algorithm marks all
points in V as outliers. We denote the set of outliers by O. Now, we make tentative assignments
permanent for non-outlier points. Specifically, we let Xi = {u ∈ V \ O : lu = i}. We return sets
X1, . . . , Xk and set O.

Analysis. We now analyze the algorithm. We first upper bound the size of Xi. Note that Xi ⊆ Di

(because every point u outside of Di which is tentatively assigned to cluster i is marked as an
outlier; thus, it does not belong to Xi). Claim D.1 implies that |Xi| ≤ ni/η.

Claim D.1. For every i, we have |Di| ≤ ni/η.

24

Table 1: Probabilities and pseudo-probabilities

Notation Explanation Randomness

{P} Pseudo-probabilities
returned by SA relaxation

Deterministic

{P∗} Pseudo-probabilities
after calling MakeIndependent

Random due to rounding
in MakeIndependent

Pr “True” probability of the algorithm
Random due to independent rounding
and rounding in MakeIndependent

Pr[· | P∗]
“True” probability

conditioned on result
of MakeIndependent

For fixed P∗,
randomness is due to independent rounding

Proof. For every u ∈ Di, Pu[u ∈ Ci] ≥ η. Thus,

|Di| ≤
∑
u∈Di

P[u ∈ Ci]

η
=

ni

η
,

where in the last equality we used the linear programming constraint
∑

u∈V P[u ∈ Ci] = ni.

Lemma D.2. For every positive integer k, and η, γ, δ ∈ (0, 1/k), there exists a randomized
polynomial-time algorithm that given the optimal solution to the Sherali–Adams relaxation de-
scribed in Section 4 returns disjoint clusters X1, . . . , Xk and set of outliers O (also, disjoint from
X1, . . . , Xk) such that

1. for every u ∈ V : Pr[u ∈ Xi] ≤ P[u ∈ Ci],

2. for every u ∈ V : Pr[u ∈ O] ≤ ηk,

3. the expected cost of non-outliers is at most

1

2
E
[∑

i,j

∑
u∈Xi
v∈Xj

Aijduv

]
≤ OPTLPI

+
3(γ + δ)

η2
OPTLPII

≤
(
1 +

3(γ + δ)

η2

)
OPTSA. (9)

where OPTSA is the cost of the optimal solution to the Sherali–Adams relaxation;

Remark: The running time of the algorithm is polynomial in n and k for every fixed η, γ, δ. In
order to obtain a (1 + ε)-approximation for the Minimum Kernal Clustering Problem, we will use
this lemma with η ≈ ε2/k2 and γ = δ ≈ ε5/k4.

Proof. Item 1. We first prove that Pr[u ∈ Xi] ≤ P[u ∈ Ci] and Pr[u ∈ O] ≤ ηk. Point u belongs
to Xi if lu = i but u /∈ O. Thus, Pr[u ∈ Xi] ≤ Pr[lu = i]. Since the algorithm assigns label i to lu
with probability P∗[u ∈ Ci], we have

Pr[lu = i] = EP∗
[
Pr[lu = i | P∗]

]
= EP∗

[
P∗
u[u ∈ Ci]

]
= Pu[u ∈ Ci]

The last equality follows from Theorem 4.2, item 2.

Item 2. Point u is an outlier if lu = i, but u /∈ Di (that is, P[u ∈ Ci] < η) or MakeIndependent
fails. Thus,

Pr[u ∈ O] ≤ η +
k∑

i=1

Pr
[
lu = i

]
· 1
{
P[u ∈ Ci] < η

}
= η +

k∑
i=1

P[u ∈ Ci] · 1
{
P[u ∈ Ci] < η

}
.

25

Observe that each term P[u ∈ Ci] · 1
{
P[u ∈ Ci] < η

}
is at most η, since the term equals 0

when P[u ∈ Ci] ≥ η. Moreover, since η < 1/k, at least one of the terms equals 0. Hence,
Pr[u ∈ O] ≤ η + η(k − 1) = ηk.

Item 3. We now proceed to show bound (9). We will use that Xi ⊆ Di for all i. Write

1

2
E
[∑

i,j

∑
u∈Xi
v∈Xj

Aij duv

]
=
∑
i,j

∑
u∈Di
v∈Dj

Aij duv Pr
[
u ∈ Xi, v ∈ Xj].

If u ∈ Xi and v ∈ Xj , then lu = i and lv = j. Thus,

Pr
[
u ∈ Xi, v ∈ Xj] ≤ Pr[lu = i, lv = j]

= EP∗

[
Pr
[
lu = i, lv = j | P∗]] (by Theorem 4.2)

= EP∗

[
P∗[u ∈ Ci] · P∗[v ∈ Cj]

]
. (due to independent rounding)

Thus,
1

2
E
[∑

i,j

∑
u∈Xi
v∈Xj

Aijduv

]
≤ 1

2

∑
i,j

∑
u∈Di
v∈Dj

Aijduv · EP∗

[
P∗[u ∈ Ci] · P∗[v ∈ Cj]

]
.

Let Eδ be the set of all pairs (u, v) that are not δ-nearly independent with respect to P∗. If
(u, v) /∈ Eδ, then

P∗
u

[
u ∈ Ci] · P∗

v[v ∈ Cj] ≤ P∗
uv

[
u ∈ Ci, v ∈ Cj] + δ.

Consequently, for all u and v, we have

P∗
u

[
u ∈ Ci] · P∗

v[v ∈ Cj] ≤ P∗
uv

[
u ∈ Ci, v ∈ Cj] + 1

{
(u, v) ∈ Eδ

}
+ δ.

Thus,

1

2
E
[∑

i,j

∑
u∈Xi
v∈Xj

Aijduv

]
≤ 1

2

∑
i,j

∑
u∈Di
v∈Dj

Aijduv

(
EP∗
[
P∗
uv

[
u ∈ Ci, v ∈ Cj]

]
+ 1

{
(u, v) ∈ Eδ

}
+ δ
)
.

We split the right-hand side into two terms:

1

2

∑
i,j

∑
u∈Xi
v∈Xj

Aijduv ≤ 1

2

∑
i,j

∑
u∈Di
v∈Dj

AijduvEP∗ [P∗
uv [u ∈ Ci, v ∈ Cj]] (10)

+
1

2

∑
i,j

∑
u∈Di
v∈Dj

Aijduv

(
1
{
(u, v) ∈ Eδ

}
+ δ
)
.

In the first term, EP∗

[
P∗
uv

[
u ∈ Ci, v ∈ Cj

]]
= Puv

[
u ∈ Ci, v ∈ Cj

]
by Theorem 4.2, item 2. Thus,

the first term equals:

1

2

∑
i,j

∑
u∈Di
v∈Dj

AijduvEP∗
[
P∗
uv

[
u ∈ Ci, v ∈ Cj]

]
=

1

2

∑
i,j

∑
u∈Di
v∈Dj

AijduvPuv

[
u ∈ Ci, v ∈ Cj

]

≤ 1

2

∑
i,j

∑
u∈V
v∈V

AijduvPuv

[
u ∈ Ci, v ∈ Cj

]
= OPTLPI

.

26

Let us bound the second term on the right-hand side of (10), which we denote by R. Using the
triangle inequality, we replace duv with duci∧j + dci∧jv. We have

R ≤
∑
i,j

Aij

∑
(u,v)∈Di×Dj

duci∧j + dci∧jv

2
·
(
1
{
(u, v) ∈ Eδ

}
+ δ
)
.

The expression on the right-hand side is symmetric with respect to u and v. Thus,

R ≤
∑
i,j

Aij

∑
u∈Di
v∈Dj

duci∧j

(
1
{
(u, v) ∈ Eδ

}
+ δ
)

=
∑
i,j

Aij

∑
u∈Di

duci∧j

∑
v∈Dj

(
1
{
(u, v) ∈ Eδ

}
+ δ
)
.

Observe that
∑

v∈Dj
1{(u, v) ∈ Eδ} ≤ γ|Dj |, because P∗ is (γ, δ)-nearly independent distribution

and Eδ is the set of pairs (u, v) that are not δ-nearly independent (see Definition 4.1). Thus,

R ≤
∑
i,j

Aij

∑
u∈Di

duci∧j (γ + δ)|Dj |.

By Claim D.1, |Dj | ≤ nj

η . Therefore,

R ≤ γ + δ

η

k∑
i=1

∑
u∈Di

[k∑
j=1

Aijducu∧vnj

]
=

γ + δ

η

k∑
i=1

∑
u∈Di

FΠ(u, i),

where FΠ(u, i) is defined in Equation (4).
For every u ∈ Di, we have P[u ∈ Ci] ≥ η and hence 1

η P[u ∈ Ci] ≥ 1. Thus,

R ≤ γ + δ

η2

k∑
i=1

∑
u∈Di

FΠ(u, i)P[u ∈ Ci] ≤
γ + δ

η2

k∑
i=1

∑
u∈V

FΠ(u, i)P[u ∈ Ci] =
3(γ + δ)

η2
OPTLPII

.

This concludes the proof of Lemma D.2.

E Outlier Assignment Algorithm

In the second phase, the algorithm assigns outliers to sets Y1, . . . , Yk. It places every outlier point
u ∈ O in set Yi with probability P[u ∈ Ci]. Note that the main algorithm (described in the previous
section) uses local probability distributions P∗

u rather than Pu for assigning points to clusters.
The algorithm outputs clustering X1 ∪ Y1, . . . , Xk ∪ Yk if |Xi| ≤ 10k ni

ε and |Yi| ≤ 10k ηni

ε for each

i ∈ {1, . . . , k}. Otherwise, if |Xi| > 10k ni
ε or |Yi| > 10k ηni

ε for some i ∈ {1, . . . , k}, the algorithm
fails. In this case, we run the 3-approximation algorithm described in Section B and return the
obtained clustering.

Claim E.1. The following bound holds: Pr[u ∈ Yi] ≤ ηk P[u ∈ Ci].

Proof. By Lemma D.2, Pr[u ∈ O] ≤ ηk. Thus,

Pr[u ∈ Yi] = Pr[u ∈ Yi | u ∈ O]︸ ︷︷ ︸
=Pu[u∈Ci]

·Pr[u ∈ O]︸ ︷︷ ︸
≤η

≤ ηk P[u ∈ Ci]. (11)

27

Lemma E.2. The algorithm fails with probability at most ε/5.

Proof. By Lemma D.2, Pr[u ∈ Xi] ≤ P[u ∈ Ci] and by Claim D.1, Pr[u ∈ Yi] ≤ ηkP[u ∈ Ci] for
every u ∈ V . Thus,

E|Xi| =
∑
u∈V

Pr[u ∈ Xi] ≤
∑
u∈V

P[u ∈ Ci] = ni,

E|Yi| = ηk
∑
u∈V

Pr[u ∈ Yi] ≤ ηk
∑
u∈V

Pr[u ∈ Yi] = ηk ni.

By Markov’s inequality Pr
[
|Xi| > 10k ni

ε

]
< ε

10k and Pr
[
|Yi| > 10k2 ni

ε

]
< ε

10k . Thus, by the union
bound:

Pr

[
|Xi| >

10k ni

ε
or |Yi| >

10k2 ni

ε
for some i

]
≤ ε

5
.

Denote the event – “algorithm succeeds” – by S and the indicator of this event by 1[S]. By
Lemma E.2, we have Pr[S] ≥ 1 − ε/5. We now bound the expected cost of clustering when the
algorithm succeeds.

Theorem E.3. The expected cost of the clustering X1 ∪ Y1, . . . , Xk ∪ Yk is at most

OPTLPI
+

(
3(γ + δ)

η2
+

30ηk2

ε

)
OPTLPII

.

Proof. The expected cost of clustering X1 ∪ Y1, . . . Xk ∪ Yk equals:

1

2
E
[
1{S} ·

∑
i,j

∑
u∈Xi∪Yi
v∈Xj∪Yj

Aijduv

]
=

1

2
E
[
1{S} ·

∑
i,j

∑
u∈Xi
v∈Xj

Aijduv

]
(12)

+ E
[
1{S} ·

∑
i,j

∑
u∈Xi
v∈Yj

Aijduv

]
+

1

2
E
[
1{S} ·

∑
i,j

∑
u∈Yi
v∈Yj

Aijduv

]
.

By Lemma D.2, the first term on the right-hand side is bounded by OPTLPI
+ 3(γ+δ)

η2
OPTLPII

. We
now upper bound the second term. To this end, we prove an analog of Lemma B.1.

Claim E.4. We have∑
i,j

∑
u∈Xi
v∈Yj

Aijduv ≤
k∑

i,j=1

Aij

[∑
u∈Xi

|Yj | duci∧j +
∑
v∈Yj

|Xi| dvci∧j

]
. (13)

Proof. For u ∈ Ci and v ∈ Cj , we have duv ≤ duci∧j + dci∧jv. Thus,

k∑
i,j=1

∑
u∈Xi
v∈Yj

Aijduv ≤
k∑

i,j=1

∑
u∈Xi
v∈Yj

Aij

(
duci∧j + dci∧jv

)

=

k∑
i,j=1

∑
u∈Xi
v∈Yj

Aij duci∧j +

k∑
i,j=1

∑
u∈Xi
v∈Yj

Aij dvci∧j

=

k∑
i,j=1

∑
u∈Xi

|Yj |Aij duci∧j +

k∑
i,j=1

∑
v∈Yj

|Xj |Aij dvci∧j .

28

If the algorithm succeeds, then for each j, |Xj | ≤ 10knj

ε and |Yj | ≤ 10ηk2nj

ε . Thus,

E
[
1{S} ·

∑
i,j

∑
u∈Xi
v∈Yj

Aij duv

]
≤

k∑
i,j=1

Aij E
[
1{S}

∑
u∈Xi

|Yj | duci∧j + 1{S}
∑
u∈Yj

|Xi|duci∧j

]

≤
k∑

i,j=1

Aij E
[∑
u∈Xi

10ηknj

ε
duci∧j +

∑
u∈Yi

10knj

ε
duci∧j

]

=
10k

ε

k∑
i,j=1

njAij

[∑
u∈V

(ηk Pr[u ∈ Xi] + Pr[u ∈ Yi]) duci∧j

]
.

Now, by Lemma D.2, Pr[u ∈ Xi] ≤ P[u ∈ Ci] and by Claim E.1 Pr[u ∈ Yi] ≤ ηk P[u ∈ Ci]. Thus:

E
[
1{S} ·

∑
i,j

∑
u∈Xi
v∈Yj

Aij duv

]
≤ 10k

ε

k∑
i,j=1

njAij

[∑
u∈V

2ηk Pu[u ∈ Ci] duci∧j

]

=
20ηk2

ε

k∑
i=1

∑
u∈V

Pu[u ∈ Ci]

[k∑
j=1

Aijnj duci∧j

]

=
20ηk2

ε

k∑
i=1

∑
u∈V

Pu[u ∈ Ci]FΠ(u, i)

=
20ηk2

ε
OPTLPII

,

where FΠ(u, i) is defined in Equation (4).

We now bound the third term in (12). Using the triangle inequality and then rearranging terms
as in Claim E.4, we get

1

2
E
[
1{S} ·

∑
i,j

∑
u∈Yi
v∈Yj

Aijduv

]
≤ E

[
1{S} ·

k∑
i,j=1

∑
u∈Yi

|Yj |Aij duci∧j

]
.

We then replace |Yj | with an upper bound of 10ηknj/ε and use that Pr[u ∈ Yi] ≤ ηk P[u ∈ Ci]
(Claim E.1),

1

2
E
[
1{S} ·

∑
i,j

∑
u∈Yi
v∈Yj

Aijduv

]
≤ 10ηk

ε
E
[k∑
i,j=1

∑
u∈Yi

nj Aij duci∧j

]

=
10ηk

ε

k∑
i,j=1

∑
u∈V

nj Aij duci∧j · Pr[u ∈ Yi]

≤ 10ηk

ε

k∑
i,j=1

∑
u∈V

nj Aij duci∧j · ηk Pu[u ∈ Ci]

=
10η2k2

ε

k∑
i=1

∑
u∈V

Pu[u ∈ Ci]FΠ(u, i)

=
10η2k2

ε
OPTLPII

.

29

Since η < 1, the right hand side is less than 10ηk2

ε OPTLPII
. This concludes the proof.

F Application: Hierarchical Clustering (HC)

We showcase how our general Metric Kernel Clustering framework (⋆) can be applied to a problem
where the goal is to find a hierarchy over clusters rather than a partition. In Hierarchical Clustering
(HC), given a set of points V , the goal is to bijectively map the points on the leaves of a tree T .
Recall from Section 1, our concrete example with matrix A3 can be thought of as embedding the n
points on a ring. Here, we want to instead embed the n points to the leaves of a binary tree; and
to do so, we will pick an appropriate matrix A, and show why it allows us to get a PTAS.

Objectives for HC. There are several applications where we want to split data points into hier-
archies. Despite the rich literature on algorithmic methods (bottom-up agglomerative or top-down
divisive) to produce such hierarchies, there was a general lack of optimization desiderata in HC.
Dasgupta [2016] first defined an objective based on graph similarities and proved formal approxima-
tion guarantees for HC. This paved the way for a flurry of works in HC [Moseley and Wang, 2017,
Charikar and Chatziafratis, 2017, Cohen-Addad, Kanade, Mallmann-Trenn, and Mathieu, 2019,
Alon, Azar, and Vainstein, 2020] providing a better understanding to the theoretical underpinnings
of HC.

All of the proposed objectives in these works relied on the notion of a lowest common ancestor
(LCA) between two nodes. For two leaves i, j, let LCAT (i, j) be the LCA of i and j in tree T . The
objectives used the size of LCA as a penalty factor for the cost of separating an edge; for example,
Dasgupta’s objective was to minimize the following expression over all binary trees T :

cost(T) =
∑
u<v

wuv|LCAT (u, v)|

For the motivation why this may be a good objective we refer the reader to Dasgupta [2016],
Cohen-Addad, Kanade, Mallmann-Trenn, and Mathieu [2019]. At a high-level, since the weight
wij denotes similarities, we would like to preserve high similarity edges for as long as possible in
the hierarchical tree T , which means that ideally we should cut the edge i, j at the bottom levels
of the tree. These levels correspond to small-sized LCA. Notice that the term |LCAT (i, j)| is a
number between 2 (lowest level of T) and n (at the root of the tree). Minimizing the cost tries to
preserve similar endpoints together and split only when their LCA is small.

HC Objective based on Depth. Instead of using the size of the LCA, here we study an
optimization goal for HC where the penalty term is defined based on the depth of the LCA. For
a node i ∈ T , let h(i) denote the height of i in the tree, defined as the number of edges on the
shortest path from the root node and i (e.g. h(i) = 0 if i is the root node). Our objective is to
minimize the following expression over all binary trees T :

H(T) =
∑

u,v∈V
duvh(LCAT (u, v)) (Depth-HC)

Our objective corresponds to the fact that in a hierarchical tree representation of d(·, ·) we would like
to separate the points that are far from each other early in the hierarchical structure, corresponding
to small values of h, because otherwise assigning these points to small subtrees would incur a high
cost.

30

Here, d is a metric, and we shall note that HC has been extensively studied for metric spaces,
with the goal of finding the best tree metric to fit the metric in the data [Agarwala, Bafna, Farach,
Paterson, and Thorup, 1998, Ailon and Charikar, 2005, Cohen-Addad, Das, Kipouridis, Parotsidis,
and Thorup, 2022a], or to speed-up linkage methods via approximate nearest neighbors data struc-
tures [Moseley, Vassilvtiskii, and Wang, 2021], or to find a tree that is competitive to k-center
objectives for multiple values of k simultaneously [Dasgupta and Long, 2005]. See Appendix F.1.

Generalized Depth-Based HC Objective In objective (Depth-HC), duv is multiplied by the
depth of LCAT (i, j). In general, dependence on the depth might be more complicated, i.e. we
consider the following objective:

Hf (T) =
∑

u,v∈V
duv f(h(LCAT (i, j))) (Gen-Depth-HC)

for some fixed function f . A natural question is: for which functions f there exists a PTAS for this
objective? We show that, as long as f is monotone and satisfies the condition limt→∞

f(t+1)
f(t) = 1,

a PTAS exists (see Appendix F.2). Note that many natural functions, including all polynomial
functions, satisfy this condition.

Motivation from Graph Compression. When dealing with huge graphs, like the Internet
graph or social networks, finding a compact way of representing them is challenging. In fact, even
how to label the nodes in the graph is not obvious. Different labelings result in different storage
requirements. The reason is that how much we can compress a graph depends on how we label
its vertices. For example, compressing the Internet graph relies on several observations about how
webpages are organized made by Raghavan and Garcia-Molina [2003], Boldi and Vigna [2004].
First, pages that are proximal in the lexicographic ordering (on their URLs) tend to have similar
sets of neighbors, and second, many links are intra-domain, and therefore likely to point to pages
nearby in the lexicographic ordering. These are the similarity and locality principles respectively.
Analogous observations hold in social networks [Chierichetti, Kumar, Lattanzi, Mitzenmacher,
Panconesi, and Raghavan, 2009], as proximal users have similar sets of neighbors, and they have
empirically shown that taking such observations into account during vertex labeling and clustering
can result in significant memory savings.

An important idea in compression is the offset trick for vertex-edge representation: think of a
billion-sized graph and an edge connecting vertices a, b. Instead of storing the labels a, b explicitly
for this edge, we can store one of the labels, say a, and then the difference b− a. This simple trick
can save large amounts of space; for other examples and benefits of offset representations, see Boldi
and Vigna [2004]. The problem of finding the best labelings is often called graph reordering and is
a powerful technique to increase the locality of the representations of graphs. Many natural com-
binatorial optimization problems arise in this context, that mainly have to do with how to order
vertices on a line so as to minimize the density of edges across the labeled vertices. For example,
the classical NP-hard problem of Minimum Linear Arrangement [Charikar, Hajiaghayi, Karloff,
and Rao, 2010] is relevant in these applications. However, since the goal is to minimize storage
and storage is measured with the number of bits used, Minimum Logarithmic Arrangement and
Minimum Logarithmic Gap Arrangement were proposed in Dhulipala, Kabiljo, Karrer, Ottaviano,
Pupyrev, and Shalita [2016] as more accurate formulations of the compression problem. For exam-
ple, in Minimum Logarithmic Arrangement we try to minimize

∑
uv∈E log |π(u) − π(v)|, whereas

in Minimum Logarithmic Gap Arrangement we minimize the logarithm of consecutive gaps. As
noted in their paper, all three arrangement problems are quite different and they may have very
different optimal solutions, yielding different tradeoffs for compression.

31

Let’s return to our hierarchical clustering formulation (Depth-HC). Notice that the bits needed
for vertex and edge representations are related to the depth of a vertex in the hierarchy. A possible
encoding for example could be to store the left-right traversal for the path connecting a vertex to
the root; making sure that most similar vertices end up in nearby clusters ensures larger benefits
from using the abovementioned offset trick. Hence, our objective can be seen as trying to group
similar nodes together by explicitly minimizing the bits needed for their representation.

F.1 PTAS for Depth-Based Hierarchical Clustering

Consider a full binary tree T◦ of depth log (1/ε). Let ℓ = 1/ε be a set of labels corresponding
to each of the leaves of this tree. Let the constraints be defined by a weight matrix with entries
Aij = h(LCAT◦(i, j)), i.e. if a point a gets assigned a label i and a point b gets assigned a label
j in the CSP then the corresponding cost of this pair is h(LCAT◦(i, j)). We denote this CSP as
CSPHC . As we show below, finding a (1+ ε)-approximate solution to this CSP suffices in order to
get a (1 + ε) approximation for the hierarchical clustering objective above.

We next state our main lemma which bounds the total inter-cluster distance.

Lemma F.1. Consider an algorithm that builds a full binary tree by solving the corresponding
CSPHC and then assigning the points to the leaves of a full binary tree T◦ based on their labels in
the solution (splitting each leaf into binary subtrees randomly). If the solution to CSPHC is (1+ε)-
approximate then the solution to the hierarchical clustering objective is (1 +O(ε))-approximate.

Let γi denote the weight cut exactly at depth i. Then for t = log 1/ε:

∞∑
i=t

γt ≤ 16εOPT

Using this lemma, we show our main result.

Theorem F.2. For any metric d, there exists a polynomial-time approximation scheme for mini-
mizing the hierarchical clustering objective H(T).

Proof. By Lemma F.1, in the optimal tree, the cost associated with all internal nodes at depth at
least log 1/ε is only O(ε)OPT. Hence, by (1 + ε)-approximating the CSPHC which describes the
cost of the first log 1/ε levels in the optimum tree, we get a (1 +O(ε))-approximation overall.

Proof of Lemma F.1. Consider the optimum tree T ∗ and fix a depth threshold t. First, note that
w.l.o.g. we can assume that T ∗ is a complete binary tree with some leaves potentially empty.

Proposition F.3. Let α be the total weight inside the subtrees at depth t and β be the cost con-
tributed by all LCA nodes at depth less than t, then:

β + αt ≤ OPT ≤ β + α(t+ 1)

Proof. Consider splitting all subtrees at depth t uniformly at random. Since a 1/2i−t+1-fraction of
the weight has the least common ancestor at depth i, the resulting expected cost is:

∞∑
i=t

iα

2i−t+1
= (t+ 1)α

32

Recall that γi denotes the weight cut exactly at depth i. Let S denote the overall weight, i.e.
S =

∑∞
i=0 γi. Let βi =

∑i−1
j=0 jγj and αi = S −

∑i−1
j=0 γj . By Proposition F.3,

i−1∑
j=0

jγj + i

S −
i−1∑
j=0

γj

 ≤ OPT ≤
i−1∑
j=0

jγj + (i+ 1)

S −
i−1∑
j=0

γj

 .

Rearranging the summations:

iS +
i−1∑
j=0

(j − i)γj ≤ OPT ≤ (i+ 1)S +
i−1∑
j=0

(j − i− 1)γj

Recall that OPT =
∑∞

j=0 jγj and hence we have:

∞∑
j=0

jγj ≤ (i+ 1)S +
i−1∑
j=0

(j − i− 1)γj

= (i+ 1)
∞∑
j=0

γj +
i−1∑
j=0

(j − i− 1)γj

=

i−1∑
j=0

jγj + (i+ 1)

∞∑
j=i

γj

Rearranging the terms in the above:

(i+ 1)

∞∑
j=i

γj ≥
∞∑
j=i

jγj ,

or equivalently:

γi ≥
∞∑

j=i+1

(j − i− 1)γj

In particular, for i = 1 this implies that γ1 ≥
∑∞

j=3(j − 2)γj .

Proposition F.4. For every i ≥ 3 we have γ1 ≥ 2i−3γi.

Proof. As shown above, we have γ1 ≥
∑∞

j=3(j − 2)γj , and by induction, we can show an even
stronger statement:

γ1 ≥ 2i−3
∞∑
j=i

(j − i+ 1)γj

The base case i = 3 holds by the inequality above. Suppose we have the statement above for i.

33

Then for i+ 1 just substitute γi ≥
∑∞

j=i+1(j − i− 1)γj on the RHS, and we have:

γ1 ≥ 2i−3
∞∑
j=i

(j − i+ 1)γj

= 2i−3
∞∑

j=i+1

(j − i+ 1)γj + 2i−3γi

≥ 2i−3
∞∑

j=i+1

(j − i+ 1)γj + 2i−3
∞∑

j=i+1

(j − i− 1)γj

= 2i−2
∞∑

j=i+1

(j − i)γj ,

which is the inductive statement for the next index i+ 1.

Finally, let t = log (1/ε). By the proposition we have γi ≤ 23−iγ1. Summing up this inequality
from t to ∞ we have:

∞∑
i=t

γi ≤
∞∑
i=t

23−iγ1 = 2−tγ1

∞∑
i=t

2t−i+3 ≤ 16εγ1 ≤ 16ε ·OPT.

F.2 PTAS for the Generalized Depth-Based Objective

Our result from the previous section, which gives a PTAS for H(T), can be generalized to arbi-
trary functions of depth. In particular, we give a PTAS for the following generalized depth-based
objective:

Hf (T) =
∑

u,v∈V
duv f(h(LCAT (u, v))) (Gen-Depth-HC)

Theorem F.5. For any monotone non-decreasing function f satisfying limt→∞
f(t+1)
f(t) = 1 and a

metric space d there exists a polynomial-time approximation scheme for minimizing the hierarchical
clustering objective Hf (T).

Proof. We show that one can truncate the optimal tree at a certain level and then use our PTAS
for Weighted Metric Clustering up to this level and then split the resulting clusters randomly at
lower levels with only a slight increase in the cost.

Consider the optimal tree T ∗. Similarly to the previous section, we can truncate the tree at
depth t∗, which gives us 2t

∗
clusters, and then build a random tree for every resulting cluster. For

any u, v from the same cluster, edge (u, v) is cut with probability 2−i−1 on level t∗ + i, and hence
the expected contribution of the edge (x, y) to the objective is

duv

∞∑
i=0

f(t∗ + i)

2i+1
.

On the other hand, using that f is monotone, the smallest possible contribution of this edge to the
objective is duvf(t

∗). Hence, for any cluster C, the ratio of the expected contribution of the edge in

the random tree on C to its contribution in the optimal tree on C is at most
∑∞

i=0
f(t∗+i)
2i+1f(t∗)

. Since

34

Figure 3: Comparison of the depth-based objective (Depth-HC) and Dasgupta’s objective. Left
column: Zebrafish gene counts dataset, right column: Amazon reviews dataset. Data points
correspond to averages over 10 runs, and error bars correspond to the 10% and 90% quantiles. For
both datasets, we subsample 100, 1000, and 5000 points.

limt→∞
f(t+1)
f(t) = 1, for every ε there exists t0 such that f(t+ 1) < (1 + ε)f(t) for all t ≥ t0. Hence,

for t∗ ≥ t0:

∞∑
i=0

f(t∗ + i)

2i+1f(t∗)
≤

∞∑
i=0

(1 + ε)i

2i+1
=

1

2(1− (1 + ε)/2)
=

1

1− ε
= 1 + ε+ o(ε).

Hence, there exists t∗ – which is a constant depending on f and ε – such that approximating the
tree cost up to level t∗ suffices for approximating the total tree cost. Finally, similarly to the
previous section, we apply our main result on the distance matrix d and the cost matrix A such
that Aij = f(hij), where hij is the depth of the LCA of clusters with indices i and j.

G Additional Experiments

We first describe the experimental setup used in Figure 2 from Section 6. The 20 Newsgroup
dataset used for the experiments consists of the documents. Each document belongs to one of
20 topics, organized in a two-layer hierarchical structure. The first layer of this structure has 7
nodes, which we use to recover the flat clustering of the documents. Finally, to compute distances
and similarities between the documents, we convert all the documents to the embedding vectors
(after removing redundant information, such as email addresses) using a pre-trained language model
initialized as SentenceTransformer(’all−MiniLM−L6−v2’).

In this section, we present our experiments on additional datasets in the same settings as in Sec-
tion 6. In Figure 3 experiments, we show the performance of our hierarchical objective (Depth-HC)
and the Dasgupta’s objective on Zebrafish gene counts dataset [Wagner et al., 2018] and

35

Figure 4: Distribution of classes in the hierarchical clustering for CIFAR-10 dataset. For each class
(row), we show its distribution across the clusters (columns) in the hierarchical tree up to depth
6. For each class i and cluster i, define cij as the number of points in cluster j with class label i.
Then, the intensity of (i, j)-th cell’s color represents

cij∑
j′ cij′

, with black corresponding to value 1,

and white corresponding to value 0. Most of the classes are concentrated in small subtrees, which
shows that the hierarchical objective achieves good class separation

Amazon reviews dataset5. Similarly to Figure 2, (Depth-HC) significantly better recovers the
ground-truth clusters, and our algorithm for optimizing (Depth-HC) shows a slower growth rate.

Next, we present our experiments for CIFAR-10 test dataset (104 points) and the subset of the
Imagenet dataset where from each class we sample a single point (103 points).

For CIFAR-10, we build a tree up to depth 6, and in Figure 4 we show the distribution of
the classes across the resulting clusters. For most classes, the points from the same class tend to
group together in the tree: for example, for class “ship”, most of the points lie in clusters 16-23,
corresponding to a single subtree. Among these classes, the only ones with substantial intersection
are classes “automobiles” and “trucks”, which is due to the similarity between these classes.

For the small ImageNet dataset (103 images, one image per class), we build a hierarchy up to
depth 4 (larger depth provides better separation, but we limit the depth to 4 due to presentation
considerations). Then, we select the most common super-classes (for example, “terrier” is a super-
class for “Irish terrier”, “Tibetan terrier”, “silky terrier”, etc.) and show the allocation of images
corresponding to these super-classes. While the resulting clusters are sometimes mixed, there are
clear tendencies: clusters 7 and 12 (counting from left to right) mostly have dogs, cluster 4 has
shops and screens, and clusters 9-12 have bears, snakes, and spiders. The mixed results might
be attributed to the fact that the similarity between embeddings doesn’t precisely represent the
similarity between the images (since for classification purposes, it suffices to only separate different
classes) or due to the influence of the images outside of the sampled set.

In conclusion, for both datasets, hierarchical clustering according to the new hierarchical clus-
tering objective produces hierarchical trees with good class separation. Finally, the heuristic based
on the LPII objective provides shows good empirical performance while being able to handle
reasonably-sized datasets.

5https://www.kaggle.com/datasets/kashnitsky/hierarchical-text-classification

36

https://www.kaggle.com/datasets/kashnitsky/hierarchical-text-classification

Figure 5: Sample images from a hierarchy built on the small ImageNet dataset. We build a hierarchy
on 103 images (one image per class), and we show allocation for the images corresponding to the
following super-classes: “terrier”, “hound”, “snake”, “bottle”, “shop”, “screen”, “spider”, “bear”.
For the sake of presentation, we only build a tree up to a depth 4. Empty branches correspond to
subtrees without sampled images

37

	Introduction
	Previous Work and Our Results
	Main Result

	Application to Hierarchical Clustering
	Sherali–Adams and Local Probability Distributions
	Making Point Distributions Nearly Independent

	Main Algorithm
	Experiments
	Conclusion
	Background on CSPs
	3-Approximation Algorithm
	Proof of Theorem 4.2
	Main Algorithm
	Outlier Assignment Algorithm
	Application: Hierarchical Clustering (HC)
	PTAS for Depth-Based Hierarchical Clustering
	PTAS for the Generalized Depth-Based Objective

	Additional Experiments

