Approximation Scheme for Weighted Metric Clustering via
Sherali-Adams

Dmitrii Avdiukhin* Vaggos Chatziafratis
dmitrii.avdiukhin@northwestern.edu vaggos@ucsc.edu
Konstantin Makarychev* Grigory Yaroslavtsev?
konstantin@northwestern.edu grigory@gmu.edu
Abstract

Motivated by applications to classification problems on metric data, we study Weighted
Metric Clustering problem: given a metric d over n points, the goal is to find a k-partition of
these points into clusters C1, . . ., Cy, while minimizing Zle 25:1 > uec, Zuecj A;j dyy, where
A is a k x k symmetric matrix with non-negative entries. Specific choices of A lead to Weighted
Metric Clustering capturing well-studied graph partitioning problems in metric spaces, such as
Min-Uncut, Min-k-Sum, Min-k-Cut, and more.

Our main result is that Weighted Metric Clustering admits a polynomial-time approximation
scheme (PTAS). Our algorithm handles all the above problems using the Sherali-Adams linear
programming relaxation. This subsumes several prior works, unifies many of the techniques
for various metric clustering objectives, and yields a PTAS for several new problems, including
metric clustering on manifolds and a new family of hierarchical clustering objectives. Our
experiments on the hierarchical clustering objective show that it better captures the ground-
truth structural information compared to the popular Dasgupta’s objective.

1 Introduction

We introduce and study Weighted Metric Clustering problem: given n points from an arbitrary
metric space (V,d), we want to find a k-partition of V, i.e. a partition into k clusters C1, ..., C},
where k is assumed to be a fixed constant. Because the quality of clustering may depend on the
application at hand, we allow for a user-defined k x k symmetric matrix A with non-negative entries
to be part of the input. Matrix A determines the “cost penalty” for how the k different clusters
interact: if u is assigned to cluster C; and v is assigned to cluster Cj, then the pair (u,v) pays
A;jdy,, where the distance between elements u, v is denoted as d,,. Hence, our goal is to minimize
the following objective:

k k
CosT(Cy,...,Cr) =D > Ay W(Ci,C)), where W(Ci,Cj) = > > du (%)
=1 j=1 ueC; UECj

In Weighted Metric Clustering, n is the number of input variables and k is assumed to be a fixed
constant independent of n. Observe that W(C}, C;) can be thought of as an overall measure of

*Northwestern University, Illinois
TUniversity of California Santa Cruz, California
tGeorge Mason University, Virginia

dissimilarity between clusters C; and C; (or within cluster C; when i = j), which is weighted with
A;j in the objective ().

Note that we can interpret our objective (x) as a minimization valued Constraint Satisfaction
Problem (MIN-CSP) on variables in V' and domain D = {1,...,k}. In this CSP, we have a
constraint for all pairs of variables. The weight of the constraint between variables u and v equals
the distance d,. The payoff function for each constraint is defined by matrix A: namely, the cost
of assigning labels 7 and j to variables u and v equals A;;. The goal is to find an assignment, i.e. a
mapping ¢: V — D minimizing the total payoft: Zle Z§:1 Y ouev 2ovey Aijduy- 1{l(u) = i;4(v) =
i}

The strength of objective (x) lies in the flexibility of choice of matrix A, allowing it to cover
many important problems.

Metric Min-Uncut [Indyk, 1999] This is the complement of Max-Cut where we want to split
into two clusters so as to minimize the sum of pairwise distances within clusters. If in (x) we set

1 .
k=2 A= [0 (1)] , then we pay d,, only for elements u, v that end up in the same cluster.

Metric Min-k-Sum [Bartal, Charikar, and Raz, 2001] Also termed Min-k-Uncut, this is
the natural extension of the previous problem to k clusters, where we want to minimize the sum of
distances between pairs of points assigned to the same cluster. Fixing A = I« to be the k& x k
identity matrix yields the problem.

Metric Multiway Cut [Dahlhaus, Johnson, Papadimitriou, Seymour, and Yannakakis,
1994] We can also model problems where the cost is based on the separated w,v pairs. For
example, taking A = Jrxr — Igxk, where J is the all-ones matrix, yields the Min-k-Cut objective,
with the goal of minimizing the sum of distances among all pairs of separated points. Min-k-
Cut problem additionally requires that all clusters are non-empty, and one possible approach is
to fix one point per cluster; this variant of the problem, known as a multiway cut, is MAX SNP-
hard [Dahlhaus et al., 1994] even for & = 3. Our algorithms are robust to such modifications of the
objective and provide a PTAS for the metric case for fixed k.

A related problem is a multicut problem (see e.g. Costa, Létocart, and Roupin [2005]), where,
given a set of k pairs {(s;, ti)}le, we need to remove the edges with the smallest possible weight
so that s; and t; are disconnected for all 7. For fixed k, similarly to the multiway cut problem, we
can guess clusters for all s; and ¢;.

Metric Clustering on Manifolds Our formulation can also capture problems where data points
reside on a manifold. In this case, the clusters are related (they can form a chain, a ring, or a grid)
and we would like to find a clustering by grouping adjacent data points. As an example, the chain
topology on four clusters, i.e. C7 — Cy — C3 — Cy, can be represent by matrix

OO =N
S = N =
_ N = O
N = OO

indicating that pairs of points in the same cluster pay 2, pairs in the neighboring clusters pay 1,
and pairs in non-neighboring clusters pay 0. Understanding such problems on manifolds served as
motivation for the original work by Song, Smola, Gretton, and Borgwardt [2007] that introduced

the maximization variant of a special case of (x) called Kernel Clustering. For such problems, to
the best of our knowledge, no approximation was known for the minimization versions and our
results provide the first PTAS.

New Application to Metric Hierarchical Clustering To highlight the versatility of our
objective (x), we present an application to hierarchical clustering motivated by graph compression
and graph reordering problems in social networks [Dhulipala, Kabiljo, Karrer, Ottaviano, Pupyrev,
and Shalita, 2016]. We introduce a novel family of minimization objectives over hierarchies which
depend on the depth of the Lowest Common Ancestors (LCA) for pairs of leaves. In contrast, almost
all prior works considered hierarchical clustering objectives based on the size of the LCA [Dasgupta,
2016].

2 Previous Work and Our Results

While there were important works on obtaining PTAS’s for minimization problems [Indyk, 1999,
de la Vega, Karpinski, and Kenyon, 2004, de la Vega, Karpinski, Kenyon, and Rabani, 2003], it was
not a priori clear whether a PTAS for these problems could exist. This is mainly due to pessimistic
hardness results that hold for related minimization problems: for example, for every k > 2 and
e > 0, the Min-k-Sum problem cannot be approximated within n2~¢, even for dense graphs [Kann,
Khanna, Lagergren, and Panconesi, 1996]. For more background on maximization and MIN-CSPs
(Appendix A).

Surprisingly, we show that every problem within our Weighted Metric Clustering (x) frame-
work admits a PTAS. As a consequence, this gives alternative PTAS for various problems, e.g., it
subsumes known PTAS results for Metric Min-Uncut [Indyk, 1999] and Metric Min-k-Sum [Bartal,
Charikar, and Raz, 2001]. Furthermore, we give new PTAS’s for various other problems, since any
matrix A gives rise to a new clustering problem. In particular, our framework gives the first PTAS
for metric minimization version of clustering on manifolds mentioned above [Song et al., 2007],
multiway cut [Dahlhaus et al., 1994], and multicut [Costa et al., 2005] problems. Furthermore, we
give PTAS for a new family of hierarchical clustering objectives motivated by graph compression
and graph relabeling.

An interesting aspect of our result is that a single algorithmic technique based on the Sherali—
Adams LP relaxation can accommodate all problems. Notice that just Min-k-Sum required a
variety of tools (and often ad hoc ideas) to get a PTAS: for example, the PTAS of Indyk [1999] for
k = 2 relied on the already known PTAS for metric Max-Cut, the first non-trivial approximation of
Min-k-Sum (for general k) relied on metric embeddings into hierarchically separated trees combined
with dynamic programming, and finally, the PTAS of de la Vega, Karpinski, Kenyon, and Rabani
[2003] used sampling and exhaustive search combined with careful reassignment of nodes to the
k clusters. Our main result can be seen as a unified method that provides PTAS not only for
Min-k-Sum, but all other metric problems in our framework.

Sherali—Adams. The Sherali-Adams lift-and-project method [Sherali and Adams, 1990] is a
powerful technique for strengthening linear programming relaxations. This as well as other lift-
and-project methods (e.g., by Lovasz and Schrijver [1991]) have been extensively studied in Com-
puter Science and Operations Research.! They asked if Sherali-Adams can be used to improve
approximation guarantees for constraint satisfaction and combinatorial optimization problems. It
turns out, that in many cases, the answer to this question is negative. Yannakakis [1988] proved

!See the survey by Chlamtac and Tulsiani [2012] for an overview of results.

the Traveling Salesman Problem (TSP) cannot be solved exactly using a symmetric “extended
formulation” of polynomial size and, in particular, by a Sherali-Adams relaxation of polynomial
size. De la Vega and Kenyon-Mathieu [2007] and Charikar, Makarychev, and Makarychev [2009a]
showed that Sherali-Adams relaxation can not be used to improve approximation guarantees for
many constraint satisfaction problems if we do not make additional assumptions about the structure
of the CSP instances (see also Alekhnovich, Arora, and Tourlakis [2011]).

However, in some cases, Sherali-Adams can be used to obtain better approximations for MAX-
CSPs. In particular, Yoshida and Zhou [2014] gave a PTAS for dense instances of MAX-CSPs (but
not MIN-CSPs!). For additional examples of MAX-CSP approximations using Sherali-Adams, we
refer the reader to recent papers by Thapper and Zivny [2017], Hopkins, Schramm, and Trevisan
[2020], Romero, Wrochna, and Zivny [2021], Cohen-Addad, Lee, and Newman [2022b], Mezei,
Wrochna, and Zivny [2023].

Kernel Clustering Motivated by applications in machine learning and statistics, Kernel Clus-
tering was proposed by Song, Smola, Gretton, and Borgwardt [2007] as a broad family of clustering
methods based on the mazimization of dependence between the input variables and their cluster
labels. It is a unified framework for various clustering methods arising from geometric, spectral
or statistical considerations, and it has connections to k-means, clustering under topological con-
straints, and hierarchical clustering. Formally, their goal is to mazimize objective () under the
assumption that both the distance matrix d and the cost matrix A are positive semidefinite. On the
other hand, while we require d to be a metric, we don’t require d and A to be positive semidefinite.

Kernel Clustering is a generalization of the positive semidefinite Grothendieck problem [Nes-
terov, 1998] that has found many algorithmic applications [Alon and Naor, 2004, Charikar and
Wirth, 2004, Charikar, Makarychev, and Makarychev, 2009b], and has further connections to
semidefinite programming, non-convex optimization and the Unique Games Conjecture [Khot and
Naor, 2008, 2013]. Khot and Naor [2008, 2013] studied Kernel Clustering, presenting constant
factor approximations and hardness results. In our paper, we show a PTAS for the minimization
version of the problem under metric assumption.

2.1 Main Result
The main question we address here is the following:
What is the best approximation for the Weighted Metric Clustering objective (x)?
Our main result shows that we can get an arbitrary good approximation.
Theorem 2.1. (Informal) There is a PTAS? for the Weighted Metric Clustering objective ().

As a corollary, we get a PTAS not only for all the above-mentioned problems, but also many
more, since any choice of the matrix A generates a new, different clustering objective. In particular,
with careful choice of A, we provide PTAS’s for problems where the PTAS’s were not previously
known, such as clustering on manifolds and a family of hierarchical clustering objectives (Section 3),
where each pair of elements is penalized depending on the depth of their least common ancestors. We
describe the depth-based hierarchical clustering objectives in Section 3, with additional motivation
based on the Minimum Logarithmic Arrangement presented in Appendix F, and we empirically
demonstrate the advantage of these objectives in Section 6.

2For a minimization problem, a PTAS is an algorithm that, given ¢ > 0 as a parameter, returns a 1+ ¢e)-
approximation to the optimal value and runs in polynomial time for any constant e. For maximization, we seek a
(1 — e)-approximation.

Note that without metric assumption, we cannot have a PTAS even when k¥ = 3 [Khot and
Naor, 2013] under the Unique Games Conjecture, hence it’s remarkable that a PTAS for the metric
minimization version is possible. Moreover, we handle Weighted Metric Clustering using a single
algorithmic technique via the Sherali-Adams linear programming [Sherali and Adams, 1990]. This
subsumes several prior works, unifies many of the techniques on various clustering objectives, and
yields PTAS’s for new problems, including a new family of hierarchical clustering objectives.

Our Techniques While it is already known that the Sherali-Adams hierarchy can be used to get
PTAS’s for CSPs, the naive approach would result in additive error terms, which can be acceptable
for mazimization objectives but are intolerable for minimization objectives, such as (x). Our
algorithm makes Sherali~Adams relaxations applicable to a wide class of minimization objectives
and has two stages:

e Stage I assigns most of the elements via independent rounding;

e Stage II carefully handles the rest of the points, which we refer to as outliers.

To handle the outliers, we rely on the second objective LPy;, which is optimized simultaneously
with the Sherali-Adams relaxation LPr; formally, we minimize max(LP1, LP1r) and ensure that it is
upper-bounded by OPT. On the other hand, a solution to LP; simplifies the process of assigning
the outliers to the clusters. See Section 4 for the details.

Practical Algorithm and Experiments In Section 6, we introduce a practical version of our
algorithm based on LPyy, which provides a constant-factor approximation to objective (x). We run
our experiments on 10% data points and show that our hierarchical clustering objective recovers a
ground-truth clustering better compared to the popular Dasgupta’s objective [Dasgupta, 2016].

3 Application to Hierarchical Clustering

We showcase how our general Weighted Metric Clustering framework (%) can be applied to the
problem of finding a hierarchy over clusters rather than a partition. In Hierarchical Clustering
(HC), given a set of points V', the goal is to bijectively map the points on the leaves of a tree 7. HC is
a very popular method with a wide range of applications [Leskovec, Rajaraman, and Ullman, 2020].
Recent literature [Dasgupta, 2016, Moseley and Wang, 2017, Cohen-Addad, Kanade, Mallmann-
Trenn, and Mathieu, 2019] introduces a number of HC objectives where, for the hierarchical tree T,
each pair of elements (u,v) is penalized based on the number of leaves under the Lowest Common
Ancestor (LCA) of w and v in T, denoted as LCA7(u,v) (for literature review, see Appendix F).
Instead of using the number of leaves under the LCA, here we propose an optimization objective
for HC where the penalty term is defined based on the depth of the LCA. For a node v € T, let
h(v) denote the depth of v in the tree, defined as the number of edges on the shortest path from
the root to v (e.g. h(r) = 0 if r is the root node). Our goal is to minimize the following over all
possible binary trees 7:

H(T) =) duy h(LCA7(u,0)) (Depth-HC)

u, eV

Here d is a metric, and we shall note that HC has been extensively studied for metric spaces [Agar-
wala, Bafna, Farach, Paterson, and Thorup, 1998, Ailon and Charikar, 2005, Dasgupta and Long,
2005]. Objective Depth-HC captures the fact that it is better to separate the distant points early
in the hierarchical structure, i.e. A(LCA7(u,v)) should be small when dy, is large. For HC, we
show the following result (proof in Appendix F).

b {a} {} {b}{cd}

¢ d
Tree T 75 — recovery of T up to depth 2

Figure 1: Recovering a tree up to a certain depth

Theorem 3.1. For any metric d, there exists a PTAS for minimizing the objective Depth-HC.

In order to map the HC objective to Weighted Metric Clustering (x), we must appropriately
choose matrix A. The main idea is to show that it suffices to recover the tree up to the depth
log(1/¢) (see Figure 1) and build random trees on deeper levels. Let 7, be a full binary tree
7o of depth log(1/¢), and we associate the k = 1/e leaves ¢1,...,¢; of 75 with corresponding
clusters C1, ..., Cy. For different clusters C; and C}, we define A;; as the depth of their LCA, i.e.
h(LCA7, (¢;,¢;)). Note that if u is assigned to C; and v is assigned to C}, then the pair (u,v) pays
A;j;, regardless of further partitioning of C; and C). For a pair of points in the same cluster Cj,
since a random binary tree splits every edge with probability 1/2 at every level, the expected depth
of the LCA is h(¢;) + % + i + % + - < h(¥) + 1, which we select as A;;.

Depth-based objectives are useful in Graph Compression and Vertex Reordering problems [Ragha-
van and Garcia-Molina, 2003, Boldi and Vigna, 2004, Chierichetti et al., 2009, Dhulipala et al.,
2016], where the goal is to find space-efficient labeling schemes for the nodes in the graph. Roughly
speaking, the depth h(LCA7(i,7)) corresponds to the bits needed to represent a vertex in the
graph, and, exploiting the fact that similar nodes tend to have similar sets of neighbors, one can
significantly reduce the bit-complexity of the graph representation. A more in-depth discussion and
the proof of Theorem 3.1 are deferred to Appendix F.

Extensions. We note that our result for objective Depth-HC in Theorem 3.1 also holds for
more general cost functions than the hierarchical clustering objective Depth-HC specified above.
For example, instead of the depth of the lowest-common ancestor, h(LCA7(i,7)), we could also
penalize according to the logarithm of the depth, i.e. log h(LCA7(i, 7)), or the square of the depth,
i.e. h2(LCA7(i,7)); our algorithms and proofs would still guarantee a PTAS in these cases. In
fact, any function which depends on the depth subexponentially works. For the formal statement
regarding the more general hierarchical clustering objectives, see Appendix F.

4 Sherali-Adams and Local Probability Distributions

Our (1 + ¢)-approximation algorithm for Weighted Metric Clustering uses a Sherali-Adams re-
laxation for the problem. Sherali-Adams [Sherali and Adams, 1990] is a lift-and-project method
for strengthening linear programming (LP) relaxations. In this paper, we will use a “local proba-
bility distribution” approach to Sherali-Adams [de la Vega and Kenyon-Mathieu, 2007, Charikar,
Makarychev, and Makarychev, 2009a]. We also use a method for removing dependencies between
random variables in local distributions, which was developed by Raghavendra and Tan [2012] (see
also Barak, Raghavendra, and Steurer [2011] and Yoshida and Zhou [2014]).

We now describe the Sherali-Adams LP relaxation. For every tuple of points v € V", where
r > 2 is a fixed integer parameter, we have a set of LP variables that defines a probability dis-
tribution of “labels” on wvq,...,v,. For every £ € {1,...,k}", we introduce a variable P, [Ul €

Coy,--.,vr € Cy,]. Each of these k" variables (sometimes called pseudo-probabilities) lies in [0, 1]
and represents the probability that point v; is assigned to cluster Cy, for all i.3 For every v € V¥,
the linear programming relaxation has the constraint Zee{l,...,k}f‘ Py [vl € Cy,...,00 € CgT] =1.
This constraint ensures that in a feasible LP solution, every Py, indeed defines a local probability
distribution on points vy, ..., v,.

We also add a constraint that guarantees that this probability does not depend on the order of

points vy, ...,v,. For example, for r = 2, we impose constraint Pla € C1,b € Co] = Plb € Cy,a €
(4], where a and b are arbitrary points from V. Specifically, for every permutation o of {1,...,k},
we have:

IPV[Ul € Cgl, Lo, Up € Cgr] = Pv[va(l) S Cgal,...,vgk S Cg%].
LP variables P, [m €eCpy... v € Cgr] prescribe probabilities to elementary events {111 €eCp,... v €

Cy.} and thus define probabilities for all events: for & C {1,...,k}", we let Py[v € &] =
Y ovce Py [vl € Cy,y...,up € Cgr]. In other words, Py[v € £] is the probability that labels for
v1,...,0, drawn from local distribution P are Cy,,...,Cy, (respectively) with £ € £. To avoid
ambiguity, we will use a different notation to denote probabilities associated with our algorithm.
We shall write Prjv; € X1,...,v, € X,] to denote the probability that points v1,...,v, belong to
random sets X7, ..., X, chosen by the algorithm.

An important constraint of the Sherali-Adams relaxation is that all local distributions are locally
consistent, as we explain next. Consider two tuples u and v. Let z be the set of common points
in u and v. Both u and v define marginal probability distributions on cluster labels for points
in z. We require that these marginal distributions be the same. Specifically, we add a constraint
to the linear program that enforces that label distributions on u and v agree on the intersection
z = unv. We denote the marginal probability distribution on every set z of size at most r by P,.
If z consists of one point v or two points u,v, we write P, and Py, respectively.

We stress that even though all local distributions P are locally consistent, generally speaking,
there is no global distribution of cluster labels that is consistent with all local distributions. We also
note that the size of the Sherali-Adams is exponential in r, since the number of variables equals
n” - k". Thus, if we want to solve a Sherali—Adams relaxation in polynomial time, the parameter r
must be a constant.

When each variable in a solution to the Sherali-Adams relaxation is equal to 0 or 1, we call
the solution integral. An integral solution corresponds to an actual clustering in which u belongs
to C; if and only if P,[u € C;] = 1. Moreover, Py [vl € Cp,...yvp € CZT] = 1 if and only if
vy € Cpyyeny vp € Cp,. That is, Py [v1 € Cpy,...,vr € Cp] = {vg € Cy,.,...,v, € Cp, }, where
1{€} is the indicator of the event £. We now define the objective function for our Sherali-Adams
relaxation and introduce some additional constraints. We assume that we know the sizes of the
optimal clusters ny = |Cf|,..., np = |C}|. We additionally assume that we know their centers
c1 € Cf,... ¢, € Cf which guarantee 3-approximation (see Lemma B.2). Note that there are at
most O(n?*) combinations of different ¢;’s and n;’s, and hence we can try all possibilities. We use
IT to denote the particular choice of ¢;’s and n;’s and call it the clustering profile.

The objective of our linear programming relaxation is the maximum of LP; and LP; under the
constraints above:

minimize LP = max(LPy, LPyy), (1)

3Formally, one should think about assigning point v; to C¢, as of assigning label £; to point v;

k
Z Z Aij duv Puv [u € Ci’ vE CJ]
j=1lu,weV

Z uEC]

N =

LPp =

w \

I M?r I Mw

k
i) = Z nj Qg dUCz‘/\j’ (2)
j=1

where i A j is defined as min(s,j). The first objective LP; is a direct relaxation of the objective
function of Weighted Metric Clustering: in an integral LP solution — when each P, [u eC;,v e Cj]
is 0 or 1 — the value of LP; equals the cost of the corresponding combinatorial solution to Weighted
Metric Clustering. Consequently, in the optimal integral solution to the problem, LP; = OPT,
where OPT = cosT(CY, ..., Cj) is the value of the optimal solution.

The second objective LP1; is upper bounded by OPT in the optimal integral solution by
Lemma B.2 when ¢;’s and n;’s are guessed correctly. This is due to the fact that for any u € V,
i € [k], and the correct guess of n; and ¢;, n; dy., is a good approximation of Zuecj dyy [de la Vega,
Karpinski, Kenyon, and Rabani, 2003]. Therefore, OPTrp, < OPT and OPTpp, < OPT, where
OPTpp, and OPTyp,, are the values of LP; and LPy; in the optimal solution to our linear program.

Intuitively, LPyy is used for bounding the error terms in the analysis and, compared to LPyy,
has the following advantages. First, every term involves a single point u (note that other variables
in each term are either guessed or fixed), and hence it’s easy to optimize. Second, LPj; refers
to cluster centers instead of clusters themselves, which is important for the case when there are
multiple equivalent solutions to the original problem, e.g. in the case of Min-Uncut. In the analysis,
we often use triangle inequality to bound dy, < dye + dey, with the choice of ¢ being crucial. LPy;
forces the center for each cluster, which makes the choice of ¢ clear in each particular case.

Finally, we add capacity constraints to our relaxation, which are satisfied in the integral solution
to Weighted Metric Clustering. For alli € {1,...,k}: > o, Pyfu € C;] < n;. These constraints are
important since LPyy is a good approximation of () only if cardinalities are guessed and enforced
correctly.

4.1 Making Point Distributions Nearly Independent

We now define nearly independent local distributions and then describe a procedure MAKEINDEPEN-
DENT that transforms local distributions P obtained by solving the Sherali-Adams LP relaxation
into a nearly independent local distributions P*. This procedure uses the conditional probability
technique for Sherali-Adams [Raghavendra and Tan, 2012]. The main difference between our result
and theirs is that we require that local distributions P* (see below) are simultaneously nearly in-
dependent for k sets D1, ..., Dy, while Raghavendra and Tan [2012] obtain a globally uncorrelated
solution which corresponds to the case when we have only one set A = V. For us, it is crucial to
have sets D1,..., Dy in the definition because some sets D; may have size o(n) (e.g., v/n). In that
case, the guarantees of the algorithm by Raghavendra and Tan [2012] are not sufficient for us.

First, we introduce some notation. Denote the distribution of pairs v and v in which u and v
are sampled independently with distributions P, and P, by P, ® P,:

(Pu ®Pv)[u eCj,ve CJ] = Pu[u S Cl] -]P’v[v S CJ]

Definition 4.1. Let Dy, ..., Dy be subsets of V. We say that a family of local probability distribu-
tions {IP} are (v, d)-nearly independent for sets D1, ..., Dy if the following condition holds: for every
w €V and every j € {1,...,k}, for all but v fraction of v in D;, we have [P, ® P, — Py, |7y < 6.
Equivalently, for all w € V and i € [k], the number of elements v € D; such that ||Py,&P,—Py |71 >
d must be at most y|D;|. If ||Py, ® Py — Py u|l7v < 0, we say that u and v are d-nearly independent
according to Py ;.

Theorem 4.2. For every 6,v,n € (0,1) and integer k > 1, there exists a randomized polynomial-
klogs k
2527277
outputs a family of local probability distributions {P}}, and {P?, }uw and exit status (“success” or

“failure”) such that

time procedure that given a solution P to the Sherali-Adams relaxation with r > 2+ rounds,

1. If the algorithm succeeds, then P* is (v, d)-nearly independent.

2. For allu,v € V and i,j € {1,...,k},

E[Py[u € Ci]] = Pyufu € Cj]
E []P):,v[u € Ci7v € C]H = Puv[u € Ci,’U S Cj]

3. The algorithm fails with probability at most 7.

The goal of algorithm MAKEINDEPENDENT is to build a (v, d)-nearly independent family {P*}
while preserving the expectation of the LP value. The algorithm builds a sequence of distributions
(PO} = {P}, {PM},.... At iteration ¢, it finds a point u violating the (v, d)-nearly independence
condition, and then conditions local distributions on the event P®[u € Cy] for i drawn from
distribution IP’T(P. Loosely speaking, every time we do the conditioning step, we make more pairs
(u,v) nearly independent. We show that a certain measure — entropy — decreases with each iteration
by at least a fixed amount, and hence in approximately r steps, we get nearly independence with
the desired parameters. We provide more details and prove this theorem in Appendix C.

5 Main Algorithm

In this section, we outline our (1 + ¢)-approximation algorithm or PTAS (polynomial-time approx-
imation scheme) for the Weighted Metric Clustering problem. We provide full details in Appen-
dices D and E. The pseudocode is provided in Algorithm 1.

Algorithm Owutline In the first step, the algorithm guesses the cluster centers {c¢;} and sizes
{n;}, which we call the clustering profile and denote by II. Note that all choices of {c¢;} and
{n;} can be enumerated in polynomial time, and our analysis assumes the correct choice. Then,
the algorithm solves the r-round Sherali~Adams relaxation for Weighted Metric Clustering (see
Section 4) and obtains local distributions P. For constant r, the size of the relaxation is polynomial
in n, and thus it can be solved in polynomial time. We then assign points to clusters using a
two-stage algorithm.

At Stage I, we assign most points to clusters X1, ..., Xy and place the remaining points, which
we call “outliers”, in set O. We guarantee that the cost of the partial clustering X1q,..., X} is
at most (14 ¢)OPT in expectation and each point is an outlier with probability at most nk (see
Lemma D.2 for the formal statement), where 7 is a small parameter depending on ¢.

Algorithm 1: PTAS for Weighted Metric Clustering

®w N O Ok~ N

©

10
11
12
13

14
15
16

17

k
ij=1
parameters: r — number of rounds of SA relaxation, n — outlier probability threshold, § —
fraction of dependent points, v — independence threshold
Guess cluster centers cy,...,c; and sizes ny,...,ng
Let {PP} be the r-round solution to SA relaxation for Problem (1)
D;={ueV: :P,ueCj]>n} foralli
{P*} = MAKEINDEPENDENT({P}, {D;}, d,7)
// Tentative assignment via independent rounding
for allu €V do
L Assign u to C; with probability P*[u € C;]

// Stage I: Assigning non-outliers

if P* is (y,0)-nearly independent for D, ..., Dy then
‘ X, =C;NDy, O:Ul(Cz\Dz)

else
L O =V // Every point is outlier

input : V — set of points, {duy}uvev — pairwise distances, {A4;;} — inter-cluster costs

// Stage II: Assigning outliers
for allu € O do
L Assign u to Y; with probability Plu € ;).

return (X; UYq,..., X UYy)

Algorithm 2: MAKEINDEPENDENT({P}, {D;},d,v)

)] aOW N =

=]

0]

input : {P} - r-round solution to SA relaxation, {D;}¥_, — candidate sets for each
cluster, § — fraction of dependent points, v — independence threshold
Let {PO)} be {P}
fort=0,1,...,r—3 do
if {P®} is (v,8)-nearly independent for sets Dy, ..., Dy, (Def. 4.1) then
L return {P(®)}
Let u be a point violating the (v, d)-nearly independence condition.
Assign u to C; with probability P®[u € Cj].
Let {P**1} be {P")} conditioned on u € C;.
return {P"~2)}

At Stage II, we cluster the outliers from set O. For this purpose, we use a variant of the 3-
approximation algorithm, which we provide in Section B. Since the number of outliers is very small,
the cost of clustering them is also small despite the fact that we use a constant factor approximation
for outliers. Finally, we combine the clusterings obtained at Stage I and Stage IT and get a clustering

of cost at most (1 4 &)OPT. The algorithm for clustering outliers is discussed in Appendix E.

Stage I We now examine the first stage of the algorithm in more detail. It is inspired by Yoshida
and Zhou [2014] and Raghavendra and Tan [2012]. The general idea is to transform the solution

for the Sherali-Adams relaxation to a family of local distributions {PP*} such that

Py lu € Civ e Cj) = Pylu € Cj] - Pylv € Cj]

10

for most pairs of points. This can be done using the method discussed in the previous section.
Next, we want to randomly and independently assign every point w to cluster ¢ with probability
Py[u € Cj]. If condition (3) holds for some pair (u,v) and all i,j, then the expected cost this
algorithm pays for clustering pair (u,v), Zij duw Aij Py [u e Ci] - Py, [U IS C’j], is approximately
equal to the LP cost of this pair, Zij duw Aij Py [u eC;,v e Cj]. The problem, however, is that
condition (3) does not hold for all pairs (u,v). Furthermore, it may happen that the algorithm
creates a very expensive small cluster X; such that for all pairs u, v € X; we do not have approximate
equality (3). Consequently, the cost of such a cluster cannot be charged to the LP relaxation.

The discussion above leads to the following idea: let us make local distributions not only nearly
independent for most pairs (u,v) but nearly independent for each point u and most v’s in each
cluster the algorithm creates. This is formally stated in Definition 4.1. However, the problem is
that the algorithm does not know in advance what clusters it is going to produce. So, it uses a
proxy for these clusters — sets of candidate points D1,...,Dg. Set D; contains points that are
somewhat likely to be assigned to cluster 1.

We now summarize Stage I. First, the algorithm solves the Sherali-Adams relaxation. Then,
it defines sets of candidates Dy, ..., Dy, where each D; contains points u for which Plu € C;] > 7
(where 7 is a small constant depending on ¢). It calls algorithm MAKEINDEPENDENT (described
Section 4.1) with sets Dy, ..., Dy and obtains (v, §)-nearly independent local distributions P*. Next,
it randomly assigns points to clusters using distribution P*. To make sure that we can pay for each
created cluster X, this cluster needs to be a subset of the corresponding candidate set D;. Thus,
if point u is assigned to X; but w is not in D;, we remove v from X; and mark u as an outlier.
Stage I returns sets Xy, ..., X, along with the set of outliers O, which are assigned to clusters at
Stage II. We can now charge the cost of all pairs (u,v) that are nearly independent to the LP
objective. Using triangle inequalities, we can also bound the cost of all other pairs (u,v) in V'\ O.
We provide all details in Appendix D.

Stage II At Stage II, we assign outliers to clusters. Our approach to dealing with outliers
is somewhat similar to the approach introduced by Makarychev, Makarychev, and Razenshteyn
[2019]. As discussed above, the number of outliers is small, which is one of the main reasons
why their assignment does not significantly change the objective. The outliers are assigned using
independent rounding based on P (instead of P* for non-outliers). In Theorem E.3, we analyze
the cost of assigning outliers to clusters. Putting everything together, we prove that our algorithm
provides a PTAS.

Theorem 5.1. For § =~y = % andr =2+ k;g;gjnk, Algorithm 1 finds clustering with the expected
2
objective value within (1 + €)-factor of OPT with probability at least 1 —n for any n < 5= -

6 Experiments

In this section, we perform experiments on the hierarchical clustering objective (Depth-HC) defined
in Section 3:
H(T)= > duh(LCAT(u,v))

u,veV

11

102,
- —— Depth-HC
= - Dasgupta /t
5 ‘Ul 101,
2 0.4 o
= —— Depth-HC £
© + 100
= Dasgupta E
5 0.3 =
c -1
8 2 10
0.2+ : : 1077+, : :
102 10° 104 102 103 104
Subsample size Subsample size

Figure 2: Comparison of the depth-based objective (Depth-HC) and the Dasgupta’s objective.
Data points correspond to averages over 10 runs, and error bars correspond to the 10% and 90%
quantiles. The experiments are performed on a single-core Intel Xeon 2.2GHz CPU.

For our experiments, we use a simplified version of the algorithm, based on the LP;; relaxation
from Section 4, which achieves 3-approximation (Appendix B):

k k
Z Z Z n; Aij duci/\j P, [u S Cz])
i=1 j=1ueV
where ny,...,n; are cluster cardinalities and ¢y, ..., c; are cluster centers. This objective can be

optimized efficiently as an instance of a minimum-cost flow problem, while precisely satisfying the
imposed cardinality constraints. We run the algorithm multiple times with different guesses of {n;}
and {c;}, and, since the guesses might be not precise, we improve the resulting solution using local
search.

Datasets We perform evaluation on various hierarchical datasets. In this section, we present
experiments on random subsamples (of sizes 102, 103, and 10%) of a well-known 20 NEWSGROUPS
dataset [Lang, 1995], and in Appendix G we present additional experiments on ZEBRAFISH [Wagner
et al., 2018], CIFAR-10 [Krizhevsky and Hinton, 2009], and other datasets. The inputs in 20
NEWSGROUPS are text documents, which we transform to the Euclidean vectors using a pre-trained
language model (see Appendix G for details). Finally, we use the ground-truth hierarchical structure
to obtain a flat clustering based on the top-level split.

Objectives We compare the following objectives:

e Depth-based objective (Depth-HC). Based on the algorithm from Section 3, we approxi-
mate the objective by building a hierarchical tree up to a certain level and building random
trees on the resulting clusters. We select the level £ so that the number of clusters 2¢ is close
to the number of ground-truth clusters.

e Dasgupta’s objective [Dasgupta, 2016], defined as », _, w(u,v)|LCA7(u,v)|, where
w is the similarity between items. We convert distances to similarities using the standard

RBF kernel: w(z,y) = exp (—M) We optimize Dasgupta’s objective using recursive
Min-Cut [Chatziafratis et al., 2020], for which we use METIS [Karypis and Kumar, 1995].

12

Evaluation and Results We evaluate how well the above objectives recover the ground-truth
clustering information using the dendrogram purity objective:

|Ci NLCAT(u,v)|
DHE(T) = ,1|c|2Z > CAr(w o)

i=1 u,weC;

where C4,...,C,, are the ground-truth clusters. Intuitively, this objective measures how well-
separated are the ground-truth clusters in the tree.

Figure 2 shows that (Depth-HC) objective achieves significantly better dendrogram purity com-
pared with Dasgupta’s objective. Moreover, the complexity of our algorithm is noticeably slower,
and, with the increase in the number of data points, the gap in quality increases, exceeding the
factor of two for 10% points. To conclude, these experiments demonstrate the usefulness of our
hierarchical objective as well as the existence of efficient approaches for its optimization.

We provide additional experiments in Appendix G.

7 Conclusion

In this paper, we describe a polynomial-time approximation scheme (PTAS) for the Weighted Met-
ric Clustering problem based on the Sherali—Adams relaxation. This in turn provides a PTAS for
many important special cases, including metric clustering on manifolds and our novel depth-based
hierarchical clustering objective. In our experiments, we compare our hierarchical clustering ob-
jective with Dasgupta’s objective and show that our objective recovers the ground-truth clustering
information more precisely.

An interesting open question would be handling cardinality constraints, which covers important
applications such as variations of the sparsest cut or objectives with balance constraints. Another
interesting variation of the objective is a sum of multiple objectives of the form ().

Acknowledgements

Konstantin Makarychev is supported by the NSF Awards CCF-1955351, CCF-1934931, and EECS-
2216970.

References

Richa Agarwala, Vineet Bafna, Martin Farach, Mike Paterson, and Mikkel Thorup. On the approx-
imability of numerical taxonomy (fitting distances by tree metrics). SIAM Journal on Computing,
28(3):1073-1085, 1998.

Nir Ailon and Noga Alon. Hardness of fully dense problems. Information and Computation, 205
(8):1117-1129, 2007.

Nir Ailon and Moses Charikar. Fitting tree metrics: Hierarchical clustering and phylogeny. In 46th
Annual IEEE Symposium on Foundations of Computer Science (FOCS’05), pages 73-82. IEEE,
2005.

Mikhail Alekhnovich, Sanjeev Arora, and lannis Tourlakis. Towards strong nonapproximability
results in the lovasz-schrijver hierarchy. computational complezity, 20:615-648, 2011.

13

Noga Alon and Assaf Naor. Approximating the cut-norm via grothendieck’s inequality. In Proceed-
ings of the 36th annual ACM symposium on Theory of computing, pages 72-80, 2004.

Noga Alon, W Fernandez de la Vega, Ravi Kannan, and Marek Karpinski. Random sampling and
approximation of max-csp problems. In Proceedings of the thiry-fourth annual ACM symposium
on Theory of computing, pages 232-239, 2002.

Noga Alon, Yossi Azar, and Danny Vainstein. Hierarchical clustering: A 0.585 revenue approxima-
tion. In Conference on Learning Theory, pages 153-162. PMLR, 2020.

Sanjeev Arora, David R. Karger, and Marek Karpinski. Polynomial time approximation schemes
for dense instances of np-hard problems. J. Comput. Syst. Sci., 58(1):193-210, 1999. doi: 10.
1006/jcss.1998.1605. URL https://doi.org/10.1006/jcss.1998.1605.

Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine learning, 56(1):
89-113, 2004.

Boaz Barak, Prasad Raghavendra, and David Steurer. Rounding semidefinite programming hierar-
chies via global correlation. In 2011 IEEFE 52nd Annual Symposium on Foundations of Computer
Science, pages 472-481. IEEE, 2011.

Yair Bartal, Moses Charikar, and Danny Raz. Approximating min-sum k-clustering in metric
spaces. In Proceedings of the thirty-third annual ACM symposium on Theory of computing, pages
11-20, 2001.

Cristina Bazgan, Wenceslas Fernandez de la Vega, and Marek Karpinski. Polynomial time approx-
imation schemes for dense instances of minimum constraint satisfaction. Random Struct. Algo-
rithms, 23(1):73-91, 2003. doi: 10.1002/rsa.10072. URL https://doi.org/10.1002/rsa.10072.

Paolo Boldi and Sebastiano Vigna. The webgraph framework i: compression techniques. In Pro-
ceedings of the 13th international conference on World Wide Web, pages 595-602, 2004.

Moses Charikar and Vaggos Chatziafratis. Approximate hierarchical clustering via sparsest cut
and spreading metrics. In Proceedings of the Twenty-Fighth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 841-854. STAM, 2017.

Moses Charikar and Anthony Wirth. Maximizing quadratic programs: Extending grothendieck’s
inequality. In 45th Annual IEEE Symposium on Foundations of Computer Science, pages 54—60.
IEEE, 2004.

Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with qualitative infor-
mation. Journal of Computer and System Sciences, 71(3):360-383, 2005.

Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Integrality gaps for sherali-adams
relaxations. In Proceedings of the forty-first annual ACM symposium on Theory of computing,
pages 283-292, 2009a.

Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Near-optimal algorithms for
maximum constraint satisfaction problems. ACM Transactions on Algorithms (TALG), 5(3):
1-14, 2009b.

Moses Charikar, Mohammad Taghi Hajiaghayi, Howard Karloff, and Satish Rao. (3 spreading
metrics for vertex ordering problems. Algorithmica, 56(4):577-604, 2010.

14

https://doi.org/10.1006/jcss.1998.1605
https://doi.org/10.1002/rsa.10072

Vaggos Chatziafratis, Grigory Yaroslavtsev, Euiwoong Lee, Konstantin Makarychev, Sara Ahma-
dian, Alessandro Epasto, and Mohammad Mahdian. Bisect and Conquer: Hierarchical Clustering
via Max-Uncut Bisection. In Proceedings of the 33rd International Conference on Artificial In-
telligence and Statistics, pages 3121-3132. PMLR, June 2020.

Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael Mitzenmacher, Alessandro Panconesi,
and Prabhakar Raghavan. On compressing social networks. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 219-228, 2009.

Eden Chlamtac and Madhur Tulsiani. Convex relaxations and integrality gaps. Handbook on
semidefinite, conic and polynomial optimization, pages 139-169, 2012.

Vincent Cohen-Addad, Varun Kanade, Frederik Mallmann-Trenn, and Claire Mathieu. Hierarchical
clustering: Objective functions and algorithms. Journal of the ACM, 66(4):1-42, 2019.

Vincent Cohen-Addad, Debarati Das, Evangelos Kipouridis, Nikos Parotsidis, and Mikkel Thorup.
Fitting distances by tree metrics minimizing the total error within a constant factor. In 2021
IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 468-479.
IEEE, 2022a.

Vincent Cohen-Addad, Euiwoong Lee, and Alantha Newman. Correlation clustering with sherali-
adams. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS),
pages 651-661. IEEE, 2022b.

Marie-Christine Costa, Lucas Létocart, and Frédéric Roupin. Minimal multicut and maximal
integer multiflow: A survey. FEuropean Journal of Operational Research, 162(1):55-69, April
2005. ISSN 0377-2217. doi: 10.1016/j.ejor.2003.10.037.

E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis. The
complexity of multiterminal cuts. SIAM Journal on Computing, 23(4):864-894, 1994. doi: 10.
1137/S0097539792225297. URL https://doi.org/10.1137/50097539792225297.

Sanjoy Dasgupta. A cost function for similarity-based hierarchical clustering. In Proceedings of the
forty-eighth annual ACM symposium on Theory of Computing, pages 118-127, 2016.

Sanjoy Dasgupta and Philip M Long. Performance guarantees for hierarchical clustering. Journal
of Computer and System Sciences, 70(4):555-569, 2005.

W Fernandez de la Vega, Marek Karpinski, Claire Kenyon, and Yuval Rabani. Approximation
schemes for clustering problems. In Proceedings of the thirty-fifth annual ACM symposium on
Theory of computing, pages 50-58, 2003.

Wenceslas Fernandez de la Vega and Claire Kenyon-Mathieu. Linear programming relaxations of
maxcut. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 53-61, 2007.

Wenceslas Fernandez de la Vega, Marek Karpinski, and Claire Kenyon. Approximation schemes for
metric bisection and partitioning. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2004, New Orleans, Louisiana, USA, January 11-14, 2004, pages
506-515. STAM, 2004. URL http://dl.acm.org/citation.cfm?id=982792.982864.

15

https://doi.org/10.1137/S0097539792225297
http://dl.acm.org/citation.cfm?id=982792.982864

Laxman Dhulipala, Igor Kabiljo, Brian Karrer, Giuseppe Ottaviano, Sergey Pupyrev, and Alon
Shalita. Compressing graphs and indexes with recursive graph bisection. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
1535-1544, 2016.

W Fernandez de la Vega. Max-cut has a randomized approximation scheme in dense graphs.
Random Structures & Algorithms, 8(3):187-198, 1996.

Alan M. Frieze and Ravi Kannan. The regularity lemma and approximation schemes for dense
problems. In 37th Annual Symposium on Foundations of Computer Science, FOCS 96, Burling-
ton, Vermont, USA, 14-16 October, 1996, pages 12-20. IEEE Computer Society, 1996. doi:
10.1109/SFCS.1996.548459. URL https://doi.org/10.1109/SFCS.1996.548459.

Toannis Giotis and Venkatesan Guruswami. Correlation clustering with a fixed number of clusters.
arXiv preprint ¢s/0504023, 2005.

Johan Hastad. Some optimal inapproximability results. Journal of the ACM (JACM), 48(4):
798-859, 2001.

Samuel B Hopkins, Tselil Schramm, and Luca Trevisan. Subexponential lps approximate max-
cut. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages
943-953. IEEE, 2020.

P. Indyk. A sublinear time approximation scheme for clustering in metric spaces. In 40th Annual
Symposium on Foundations of Computer Science, pages 154-159, October 1999. doi: 10.1109/
SFFCS.1999.814587.

Viggo Kann, S. Khanna, Jens Lagergren, and A. Panconesi. On the hardness of approximating
max k-cut and its dual. In Israeli Symposium on Theoretical Computer Science, 1996.

George Karypis and Vipin Kumar. Metis-unstructured graph partitioning and sparse matrix or-
dering system, version 2.0. University of Minnesota, 1995.

Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the thiry-fourth
annual ACM symposium on Theory of computing, pages 767-775, 2002.

Subhash Khot and Assaf Naor. Approximate kernel clustering. In 2008 49th Annual IEEE Sym-
posium on Foundations of Computer Science, pages 561-570. IEEE Computer Society, 2008.

Subhash Khot and Assaf Naor. Sharp kernel clustering algorithms and their associated grothendieck
inequalities. Random Structures & Algorithms, 42(3):269-300, 2013.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 20009.

Ken Lang. NewsWeeder: Learning to Filter Netnews. In Machine Learning Proceedings 1995, pages
331-339. Morgan Kaufmann, San Francisco (CA), January 1995. ISBN 978-1-55860-377-6. doi:
10.1016/B978-1-55860-377-6.50048-7.

Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining of massive data sets. Cam-
bridge university press, 2020.

L. Lovédsz and A. Schrijver. Cones of Matrices and Set-Functions and 0-1 Optimization. SIAM
Journal on Optimization, 1(2):166-190, May 1991. ISSN 1052-6234. doi: 10.1137/0801013.

16

https://doi.org/10.1109/SFCS.1996.548459

Konstantin Makarychev, Yury Makarychev, and Ilya Razenshteyn. Performance of Johnson-
Lindenstrauss transform for k-means and k-medians clustering. In Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, pages 1027-1038. Association for Comput-
ing Machinery, June 2019. doi: 10.1145/3313276.3316350.

Baldzs F Mezei, Marcin Wrochna, and Stanislav Zivny. Ptas for sparse general-valued csps. ACM
Transactions on Algorithms, 19(2):1-31, 2023.

Benjamin Moseley and Joshua Wang. Approximation Bounds for Hierarchical Clustering: Average
Linkage, Bisecting K-means, and Local Search. In Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017.

Benjamin Moseley, Sergei Vassilvtiskii, and Yuyan Wang. Hierarchical clustering in general metric
spaces using approximate nearest neighbors. In International Conference on Artificial Intelligence
and Statistics, pages 2440-2448. PMLR, 2021.

Yu Nesterov. Semidefinite relaxation and nonconvex quadratic optimization. Optimization methods
and software, 9(1-3):141-160, 1998.

Sriram Raghavan and Hector Garcia-Molina. Representing web graphs. In Proceedings 19th Inter-
national Conference on Data Engineering, pages 405-416. IEEE, 2003.

Prasad Raghavendra and Ning Tan. Approximating csps with global cardinality constraints using
sdp hierarchies. In Proceedings of the 33rd annual ACM-SIAM symposium on Discrete Algo-
rithms, pages 373-387. SIAM, 2012.

Miguel Romero, Marcin Wrochna, and Stanislav Zivny. Treewidth-pliability and ptas for max-
csps. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
473-483. SIAM, 2021.

Hanif D Sherali and Warren P Adams. A hierarchy of relaxations between the continuous and

convex hull representations for zero-one programming problems. SIAM Journal on Discrete
Mathematics, 3(3):411-430, 1990.

Le Song, Alex Smola, Arthur Gretton, and Karsten M Borgwardt. A dependence maximization

view of clustering. In Proceedings of the 24th international conference on Machine learning, pages
815-822, 2007.

Johan Thapper and Stanislav Zivny. The power of sherali-adams relaxations for general-valued
csps. SIAM Journal on Computing, 46(4):1241-1279, 2017.

Daniel E. Wagner, Caleb Weinreb, Zach M. Collins, James A. Briggs, Sean G. Megason, and
Allon M. Klein. Single-cell mapping of gene expression landscapes and lineage in the zebrafish
embryo. Science, 360(6392):981-987, June 2018. doi: 10.1126/science.aar4362.

Mihalis Yannakakis. Expressing combinatorial optimization problems by linear programs. In Pro-
ceedings of the 20th annual ACM symposium on Theory of computing, pages 223-228, 1988.

Yuichi Yoshida and Yuan Zhou. Approximation schemes via sherali-adams hierarchy for dense
constraint satisfaction problems and assignment problems. In Innovations in Theoretical Com-
puter Science, 2014, pages 423-438. ACM, 2014. doi: 10.1145/2554797.2554836. URL https:
//doi.org/10.1145/2554797 .2554836.

17

https://doi.org/10.1145/2554797.2554836
https://doi.org/10.1145/2554797.2554836

A Background on CSPs

Maximization vs. Minimization There is an important distinction between minimization
and maximization clustering objectives, in that minimization versions are often much harder to
approximate compared with their maximization counterparts. This is because in minimization
problems the error must be compared against a potentially very small optimum value, which might
even be equal to 0. On the other hand, for MAX-CSPs a trivial — yet often a reasonably good
solution — is a random assignment, which yields constant-factor approximations.* In contrast, for
MIN-CSPs, even obtaining polylogn approximations has been challenging. Historically, this led
researchers to first try to obtain Polynomial Time Approximation Schemes (PTAS) for MAX-CSPs.
Unfortunately, even certain MAX-CSPs like Max-Cut or Max-3-SAT cannot have PTAS’s unless
P = NP [Khot, 2002, Hastad, 2001], leading researchers to consider restrictions to the inputs.
A common approach is to try to find a PTAS under well-motivated restrictions, e.g. assuming
that the input is either dense or comes from a metric. To the best of our knowledge, both of the
Weighted Metric Clustering formulations mentioned above have not been studied under density or
metric assumptions.

Density of CSPs Fernandez de la Vega [1996], Arora, Karger, and Karpinski [1999], Frieze and
Kannan [1996] show that there exists a PTAS for Max-Cut (and various other MAX-CSPs) if the
graph is dense, i.e., it has Q(n?) edges. These works led to a series of approximation results for the
properties of dense MAX-r-CSPs instances of arity r. Roughly speaking, “dense” means that there
are 2(n") constraints (other slightly different notions of density have also been considered). For
example, a prominent dense problem is a version of the Correlation Clustering problem [Bansal,
Blum, and Chawla, 2004], where the input is assumed to be a complete graph with + or — edges.
Correlation Clustering with fixed number of clusters k is yet another example where obtaining
PTAS for minimization was much more challenging than maximization [Giotis and Guruswami,
2005]; in fact, if k is allowed to be part of the input, the minimization version is APX-hard (and
hence unlikely to have PTAS), even though the maximization version admits a PTAS [Charikar,
Guruswami, and Wirth, 2005]. For more hardness results for minimization problems, even on dense
instances, see Ailon and Alon [2007].

PTAS for Max vs Min CSPs. It is important to note that due of the density, a random
assignment satisfies a constant fraction of constraints, so dense MAX-r-CSPs have optimum value
©(n"). This implies that in order to get a PTAS for dense MAX-r-CSPs, we can design an
algorithm with additive error en™ [Alon, de la Vega, Kannan, and Karpinski, 2002]. In contrast, for
minimization problems, algorithms with additive error are insufficient since the optimal value can
be very small or even 0. In fact, there are many MIN-CSPs, such as Min-3-Uncut, that provably
do not have PTAS, even under extreme density assumptions. Somewhat surprisingly, Bazgan et al.
[2003] gave a PTAS for dense minimization versions of SAT formulas like MIN-7-SAT.

Unified PTAS for Max-CSPs. The aforementioned line of research led to significant algorith-
mic developments (smooth integer programs, random sampling and exhaustive search, connections
to low-degree polynomials etc.) and culminated in a paper by Yoshida and Zhou [2014] which
unified all these results by providing a single PTAS that worked for all MAX-CSPs, based on the
Sherali-Adams linear programming (LP) relaxation hierarchy. Their main result states that for

4For example, random assignment for 3-SAT obtains a %-approximation, but no approximation exists for the
minimum 3-UNSAT problem unless P = NP.

18

any € > 0, Sherali-Adams LP with roughly O (1 / 52) rounds gives a (1 — ¢)-approximation to dense
Max-r-CSPs.

B 3-Approximation Algorithm

In this Section, we first present a 3-approximation algorithm for Weighted Metric Clustering. This
result will be then used in the analysis of the outlier assignment step in Algorithm 1, namely for
bounding the error terms. In the following sections, we use notation W(C;, Cj) = >, <o ZUGC]- dyy.

Our 3-approximation algorithm relies on the following observation. Suppose that C7,...,C} is
the optimal clustering. Then, we can select centers ci,...,c; in Cf,...,Cy so that the distance
between every point u € C; and v € C; approximately equals dyc,,; +due;,;, Where i A j = min(i, j).
Our approximation algorithm finds centers c1, ..., ¢; by trying all possible combinations and obtains
an approximate solution by finding the minimum cost assignment of points in V' to centers c1, ..., ck.

First, we prove Lemmas B.1 and B.2 that upper- and lower-bound the cost of a clustering in
terms of its clustering profile, which is defined as follows. Consider a set of points ¢1,...,cp € V
and natural numbers ny, ...n; that add up to n. We say that the set of pairs IT = {(c;, n;)}r_, is
a clustering profile. Let

k
Fra(u,i) =2 nj Aij duc, ;- (4)
j=1
Lemma B.1. For every partitioning Cy,...,Cy of V, and an arbitrary set of centersci,...,cx € V,

we have i
0osT(Cy,...,Ch) <Y Fr(u,i), (5)
i=1 uweC;

where Fyi(u,) is defined as above, n; = |Cy|, and I1 is the set of pairs (c;,n;).

Proof. For u € C; and v € Cj, we have dyy < dyc,;,; + de; ;0. Thus,

W(CZ7C]) = Z Z dyy < Z Z (duci/\j +dci/\jv) =2 Z Z duci/\j = 2nj Z duci/\j-

ueC; ’UGCJ‘ ueC; ’UGCj ueC; UECj ueC;

Substituting this into COST, we get

k kK k k k
COST(Cl, ey Ck) = Z ZAZJW(CZ’ Cj) < Z ZAZ'JQTLJ' Z duch = Z Z Fn(u,i). O
i=1 j=1 i=1 j=1 ueC; i=1 ueC;
Lemma B.2. For every partitioning C1, . ..,Cy of V, there exist centers ¢c; € C1,. .., ci € Cy such

that i
Z Z Fri(u,i) < 3-cost(Cy,...,Ck), (6)
=1 ’U,EC,L'

where Fri(u,i) is defined as above, n; = |C;|, and II is the set of pairs (c;,n;).

Proof. Consider a random set of centers cq,...,cg, where each ¢; is selected uniformly and inde-
pendently in C;. Let IT = {(¢;, n;)}. We show that

k
Emn Z Z Fn(u,i) <3- COST(Cl7 - ,Ck)

=1 ’U,Eci

19

Consequently, for some realization of ¢y, ..., ¢, inequality (6) holds. Let us represent Frr(u,?) in
the following form:

i1 k
Fr(u,i) = |n; Aii due, + QZTLJ' Aij duc; | + |1 Aii due; + 2 Z nj Aij duc,
Jj=1 j=i+1
FL(uy) FH(u,i)

We separately upper-bound Egg [Zle > e, FL(u, z)} and Epy [Zle > uec; Fl(u, z)}
1. By definition of cosT,

k k

cosT(C,...,Ck) = ZZ Z Z Ay duy

i=1 j=1ueC;vel;
i—1
=22 | 2 Audw+2)) Aijdu
i=1 ueC; |vel; Jj=1veC;

Let us fix ¢ € [k] and v € C;. Since ¢; is a random point in C}, we have Zvecj Ajjdyy =
n;Em [Aij ducj] . Hence,

i—1 i—1
Y Aiiduy +2)) Ajjduy = niEn [Aii due,] + 2 njEn [Aij due,] = En [Fiy(u,4)]
veC; j=1lvedl; j=1

Taking the summation over all ¢ € [k] and u € C;, we get

k

En | Y) Fiy(u,i)| = cost(Cy,...,C).

i=1 ueC;

II. We have i
FII'II(ua l) =N Az’z’ duci +2 Z n; Aij duci-
Jj=i+1
For every j > i and v € ()}, we upper bound d,., using the triangle inequality dy.; < duy + duc;-
We have

En Z n; Aij duci < En Z Z Aij (duv + dvci)

ueC; ueC; UGCJ'

= LSS Ay (et)

v u' eC; ueC; ’UECj

2) Ayjdue.

ueC; vECj

k k
EH Z Z Fﬂl(u,i) < 22 % Z A” duv —I—Z Z Aij duv =2- COST(Cl,...,Ck).

i=1 ueC; i=1 ueC; veC; 7>t UECJ'

20

Combining bounds for F}[and FII{, we get

k
Em Z Z Fri(u,i)| < cosT(Cy,...,Ch) +2-cosT(Cy,...,Ck) = 3-cosT(Cy,...,C). O
i=1 ueC;

We now use Lemma B.1 and Lemma B.2 to get a 3-approximation for Weighted Metric Clus-
tering.

Theorem B.3. For every fixed integer k > 1, there exists a polynomial-time 3-approzimation
algorithm for Weighted Metric Clustering.

Proof. Let CT,...,Cy be the optimal solution for the problem. Our algorithm guesses the sizes of
the optimal clusters {n;} and their centers {¢;} such that

k
>N Fu(u,i) <3-cost(CF,...,Cp). (7)

i=1 ueC;

The existence of such centers c1,...,c; is guaranteed by Lemma 6. The algorithm then finds the
minimum cost matching between points in V' and k clusters C, ..., Cg. Every cluster C; is matched
with n; points. The cost of assigning point u to cluster C; equals Fyr(u,i). The obtained set of
clusters C', ..., is a solution for the Minimum Kernel Clustering Problem.

Observe that if we assigned every point u to the cluster it belongs to in the optimal solution,
then the cost of the matching would be upper bounded by 3-cosT(C},...,C}) (see Equation (7)).
Thus, the cost of the optimal matching is also upper bounded by 3-cosT(C7, ..., C}). By Lemma 5,
we have

k
cosT(Cy,...,Cp) <Y Y Fra(u,i) < 3-cosT(CF, ..., Ch). O
i=1 ueC;

C Proof of Theorem 4.2

We now describe an algorithm for transforming local distributions into nearly independent local
distributions. Our algorithm is based on Algorithm 4.4 from the paper by Raghavendra and Tan
[2012]. Note that the running time of the algorithm is exponential in §,~,n and k.

Algorithm 2 provides a pseudocode for our algorithm, which iteratively updates distribution P
until it is (,d)-independent. Initially, P(0) = P. At every step t € {0,...,7 — 3}, the algorithm
checks if P®) is already (v, d)-independent. If it is, the algorithm returns {IP’T(B}, and we say that
the algorithm succeeded.

On the other hand, if P® is not (v, 0)-independent, we consider two cases. If r < ¢t — 2, the
algorithm finds point w; and set Dy, that violate the (v, d)-independence requirement, i.e.

{v € Dy, : |Pu, @ Py =P, [l7v > 6} > ~[Ds,|

It then assigns w; to a cluster based on P,,. Formally, it then picks a random label ¢; € [k] with
probability P, [w; € C},] and defines new local distributions P+ as follows: for v.€ V"t and
be [k,]r—t—l’

P(t) vi€eCh,...,Vi_t_1 € Chp ,w € C
}P,Elt-i-l) [Vl c Cb“” Ve € CbT_t_l] _ v [1 r—t r—t—19 Mt Et],

Pg) [’U)t c Cgt]

21

The expression on the right-hand side is the conditional probability of the event v; €
Covys-sViet—1 € Cp,_,, given that w; € Cj,. We denote this conditional probability by
]P’s,t) [Vl S Cb17 e, V1 € Cbrftfl | wy € Cgt].

If the algorithm didn’t reach an (v, §)-independent distribution after r — 2 iterations, the algo-
rithm returns {IP’Q(Z;_Z)}, and we say that the algorithm failed.

We restate Theorem 4.2, which analyzes our algorithm.

Theorem 4.2. For every 6,v,m € (0,1) and integer k > 1, there exists a randomized polynomial-

time procedure that given a solution P to the Sherali-Adams relaxation with r > 2 + k21§)2ng rounds,

outputs a family of local probability distributions {P}}, and {P%,}u and exit status (* success” or
“failure”) such that

1. If the algorithm succeeds, then P* is (v, d)-nearly independent.
2. For allu,v eV and i,5 € {1,...,k},

E [P} u € Ci]] = Pyfu €]
E [PZU[U S CZ‘,U € C]H =]P’w[u S C’i,v S C]]

3. The algorithm fails with probability at most 7.

Proof. We now analyze Algorithm 2. If the algorithm succeeds, then the resulting family of local
distributions P* = P®) is (v, §)-independent. Thus, we need to show items (2) and (3). Ttem (2)

holds because Pq(f) and IP’q(fg are (as we prove below) martingales. In fact, one can think of IP’q(f) and

1(2 as of Doob martingales. Indeed,

IP’J)w[ueCuthC]

Prt, = j | PO
Po w1 € O] (b =g | P,

M-

E {Pg“)[u cCy | P(t)] -
1

J

Using that Pr[¢; = j | P®)] = Py, [w; € C}] = Py, [wi € Cjl, we get

E[]p(Dy e ¢y | P } Z}P’(f') [ue Cs; wy € Cj) =PD[u e C.

U, Wt

Similarly,
E []P’(tﬂ)[ue Ci;v € Gy |Pt)} =PO[u,v € Cj.

We next bound the probability that algorithm MAKEINDEPENDENT fails. To this end, we define
the following function:

k k
1
= 5 2 AVBuen, (— > BV e O] log; BYo € cz»]) .
s=1

=1

Observe that the expression in the round brackets above is the entropy of the distribution P,.
It is always non-negative. It is also upper bounded by log, k because each v can take k distinct
values — labels for sets C1,...,Cg. Thus, ®(¢) < logy k. Next, we will show that at every step of
MAKEINDEPENDENT, ®() is decreased by at least 262y /k in expectation. Let

AD(L) = B(t) — Bt +1).

22

Lemma C.1. If the algorithm does not succeed by step t (where t < r — 2), then
2 2
E [Acp(t) | P(t)] > %.

We first prove an auxiliary claim.

Claim C.2. Consider two distributed random variables X and Y. Denote their joint distribution
by Quy and their marginal distributions by Qg and Qy, respectively. Let Y' be an independent
random variable having distribution Q. Then,

H(X) —Ey |H(X |Y =Y')| = Dkr (Quy [| Qe ®Qy),

where H(X) is the entropy of X, H(X | Y =Y") is the conditional entropy, and Dip, (- | -) is the
Kullback— Leibler (KL) divergence.

Proof. Consider the mutual information I(X;Y’) of random variables X and Y. On the one hand,
I(X;Y)=H(X)—-H(X|Y), and on the other hand, I(X,Y) = Dgr, (Qqgy || Qz ® Q). Thus,

By [H(X |Y =Y')| = H(X | Y) = H(X) = Dz (Qy | @ © Q). =

Proof of Claim C.1. Consider the t-th step of the algorithm. Suppose that P(*) is not yet (7, 9)-
nearly independent. In this case, the algorithm picks point w; and set D;, for which

Hv € D, : [P @ PP —PY |7y > 6}‘ > ~|Dy,|.
By Pinsker’s inequality, for every v, we have
Dz, (B, 1| P @ PO > 2P0 @ PO — PY) 3y,
Thus, for the chosen w; and Dg,, we have

Hu € D, : D1 (IP’(“ |) @ PY) > 252}‘ > ~|Ds,-

wt,v

Hence,
Avgyep,, DKL (wr v | IP’(t) ® P)) > 262, (8)

We are now ready to bound (). Write,

k k
= %ZAvgve D, (> PP e C loga PP € Gl + > PI[w € C] log, PY (v € Cﬂ) :
=1

i=1 =1

The expression in the brackets is the difference between the entropy of distribution P(t) and P(tH)
Distribution }P’q(,)4 is the conditional distribution]P’q()wt) given wy € C;. Thus, by Claim C.2,

k
—ZIP’(t) v e Cy] logy, PO € Cj —i—ZIP’(tH ve G logy PV e G > Dir (IP’() I ng ®IP’1(f)> .
i=1 i=1
Consequently,
1
A®(0) > 73 Aveuep, Dt (PY., I PE) @ P0).

RNE

Using inequality (8) and that Dy, is always non-negative, we conclude that ®(t) > 26%v/k. O

23

Let T be the last step of algorithm MAKEINDEPENDENT. By Lemma C.1, ®(t) +t- (20%v/k) is
a supermartingale. Thus,

T—1
EPW%?]SEE:AMﬂ:ﬂﬂﬂm—ﬁﬂhﬂ%ﬁ,
=0

here, we are using that 7" is a stopping time, ®(0) < log, k, and ®(7") > 0. We have

klogy k
202y

E[T] <

By Markov’s inequality,

pr|T > klogy k <
20%ym

D Main Algorithm

In this section, we present our main algorithm for Metric Kernel Clustering. We provide pseudocode
for the algorithm in Figure 1. The algorithm first guesses centers ¢; and cluster sizes n; as described
in the previous section. Then, it solves the Sherali-Adams relaxation and obtains local probability
distributions {P}. It uses these local probability distributions to tentatively assign points in V' to
clusters C,...,Cg. It also marks some points as outliers and adds them to set O. Finally, the
algorithm leaves tentative cluster assignments intact for non-outlier points and assigns new clusters
to outlier points.

Algorithm 1 describes the algorithm for finding a partial clustering X1, ..., X and set of outliers
O. The algorithm first finds a solution to the Sherali-Adams (SA) relaxation defined in Section 4.
Denote the collection of local distributions by {P}. Using these distributions, the algorithm iden-
tifies a set of candidate points for every cluster C;:

D;={ueV:P,ueC>n},

where 7 is the parameter of the algorithm. Loosely speaking, D; is the set of points that are
somewhat likely to be assigned to cluster C; by the Sherali~Adams relaxation. The algorithm then
runs function MAKEINDEPENDENT with parameters Dy, ..., Dy (see Section 4.1). This function
returns a family of new local distributions P} and P}, that are (v,d)-nearly independent (see
Definition 4.1) if MAKEINDEPENDENT does not fail. Our algorithm now independently assigns
every point u label [, € {1, ..., k} with probability P} [u € C),]. We call this assignment a tentative
assignment, and we declare point u an outlier if u is tentatively assigned to cluster C; (i.e., l, = 1)
but w ¢ D;. Also, in the unlikely event that MAKEINDEPENDENT failed, the algorithm marks all
points in V' as outliers. We denote the set of outliers by O. Now, we make tentative assignments
permanent for non-outlier points. Specifically, we let X; = {u € V'\ O : [, = i}. We return sets
X1,..., X, and set O.

Analysis. We now analyze the algorithm. We first upper bound the size of X;. Note that X; C D;
(because every point u outside of D; which is tentatively assigned to cluster ¢ is marked as an
outlier; thus, it does not belong to X;). Claim D.1 implies that |X;| < ni/y.

Claim D.1. For every i, we have |D;| < ni/y.

24

Table 1: Probabilities and pseudo-probabilities

Notation Explanation Randomness

Pseudo-probabilities

P . Deterministi
{7} returned by SA relaxation CLETHIIHISHC
. Pseudo-probabilities Random due to rounding
{P*} . .
after calling MAKEINDEPENDENT in MAKEINDEPENDENT

Random due to independent rounding

111 79 113 3
Pr True” probability of the algorithm and rounding in MAKEINDEPENDENT

“True” probability
Pr[- | P¥ conditioned on result
of MAKEINDEPENDENT

For fixed P*,
randomness is due to independent rounding

Proof. For every u € D;, P,[u € C;] > n. Thus,

Plu € C; T
< S FECl

u€eD; N n

where in the last equality we used the linear programming constraint) . Plu € Ci] = n;. O

Lemma D.2. For every positive integer k, and n,v,8 € (0,1/k), there exists a randomized
polynomial-time algorithm that given the optimal solution to the Sherali-Adams relaxation de-
scribed in Section J returns disjoint clusters X1, ..., Xy and set of outliers O (also, disjoint from
X1,...,Xy) such that

1. for every u € V: Prlu € X;] < Plu €],
2. for every u € V: Prlu € O] < nk,

3. the expected cost of non-outliers is at most

1 3 4] 3 0
’UEX]'

where OPTg 4 is the cost of the optimal solution to the Sherali-Adams relazation;

Remark: The running time of the algorithm is polynomial in n and k for every fixed n,v,d. In
order to obtain a (1 + ¢)-approximation for the Minimum Kernal Clustering Problem, we will use
this lemma with n ~ 2/k? and v = 6 ~ £°/k*.

Proof. Ttem 1. We first prove that Prfu € X;] < P[u € C;] and Pr[u € O] < nk. Point u belongs
to X; if [, =i but u ¢ O. Thus, Prlu € X;] < Pr[l, = i]. Since the algorithm assigns label i to [,
with probability P*[u € C;], we have

Pr[l, = i] = Ep- [Pr[lu =1 IP*H = Ep- []P’Z[u € CZH =P,u € Cj]
The last equality follows from Theorem 4.2, item 2.

Item 2. Point u is an outlier if I, = 4, but u ¢ D; (that is, Plu € C;] < n) or MAKEINDEPENDENT
fails. Thus,

k
Pr[u € O] Sn—i—ZPr [l =i -1{P[u6 Ci) <77} Zn—l-ZIP’[uE Ci]-l{P[ue Ci <77}.

i=1 =1

25

Observe that each term Plu € (] - 1{P[u € G < 77} is at most 7, since the term equals 0

when Plu € C;] > n. Moreover, since n < 1/k, at least one of the terms equals 0. Hence,
Priu € O] <n+n(k —1) =nk.
Item 3. We now proceed to show bound (9). We will use that X; C D; for all 7. Write
1
2E[Z S A dm,] =33 Ay Priuc Xive X;)
4,j ueX; 4,j ueD;
’UGX]' ’UGD]'
If u e X; and v € Xj, then [, =4 and [, = j. Thus,
Prue X;, ve X;] <Prll, =14, l, = j]

= Ep- {Pr [lu=11,=7| IP’*]] (by Theorem 4.2)
= Ep« {P* [u €G] P e Cj]] (due to independent rounding)
Thus,
1 1 * *
2]E|:Z Z Aijduv:| < 5 Z Z Aijdm, - Ep« []P) [’LL S CZ} -P [U S CJ]] .
i,j ueX; %] ueD;
UEX]‘ ’UEDJ‘

Let Es be the set of all pairs (u,v) that are not d-nearly independent with respect to P*. If
(u,v) ¢ Eg, then
Py [ue G| -Pylv € Cj] <Py, [ue Csve Cj]+6.

Consequently, for all 4 and v, we have

P} [ue G| -Pilv e Cj] <Py, [ue CiveCy]+ 1{(u,v) € E(;} + 4.

Thus,
1 1
QE[ZZX Aijduv] <1 Z ZD A (Be- [P [u € Ciov € 0] + 1 (w0) € By } +9).
7 veX; " ZED;

We split the right-hand side into two terms:

%Z > Ajjduy < %Z > AijduEp- [P, [u € Ciyv € Cj] (10)
i,j ueX; i, u€D;
’UGX]' UEDj
+ %Z Z Aijduv (1{(U,’U) € E5} + 5) .
1,7 u€ED;
’UGDj

In the first term, Ep« [wa [u € (v e Cj]} = Py [u e Ci,v e Cj] by Theorem 4.2, item 2. Thus,
the first term equals:

1 . 1

5 Z Z Al'jdqu]p* [Puv [u S CZ',U S C]H = 5 Z Z Aijduvpm, [u S Ci,v S CJ]

©,] u€D; 1, u€D;
’UEDj ’UGDj

1
5 E E Az’jduquv [U eCi,ve C]]
2 ug‘\;
v

— OPTyp,.

IN

26

Let us bound the second term on the right-hand side of (10), which we denote by R. Using the
triangle inequality, we replace dy, With dy, n T de; JoTes We have

R<Y 4y Y d“”;LdM : (1{(u,v) € E(;} +5).
2% (u,v)ED; xD;

The expression on the right-hand side is symmetric with respect to v and v. Thus,

R<ZA” > duer, (L{(w0) € Es} +0)

ueD;
veED;

_ ZAU > ey 3 (L (wv) € B} +9).
ueD; veED;

Observe that ZveDj 1{(u,v) € Es} < v|Dj|, because P* is (v, d)-nearly independent distribution
and Ey is the set of pairs (u,v) that are not é-nearly independent (see Definition 4.1). Thus,

By Claim D.1, |Dj| < % Therefore,

k

IS S [At] = Z 3 s

i=1ueD; j=1

where Fii(u,1) is defined in Equation (4).
For every u € D;, we have Plu € C;] > n and hence = Plu € C;] > 1. Thus,

R<’7;—522Fnu1 [’LLEC ’7+6ZZFHU’L UEC] (7+5)0PTLP”
=1 ueD; =1 ueVv

This concludes the proof of Lemma D.2.]

E Outlier Assignment Algorithm

In the second phase, the algorithm assigns outliers to sets Y7, ..., Y:. It places every outlier point
u € O in set Y; with probability P[u € C;]. Note that the main algorithm (described in the previous
section) uses local probability distributions P} rather than P, for assigning points to clusters.
The algorithm outputs clustering X7 U Yy,..., Xx U Yy if | X;| < % and |Y;] < % for each
i € {1,...,k}. Otherwise, if |X;| > %% op |yj| > 1950% for some i € {1,...,k}, the algorithm
fails. In this case, we run the 3-approximation algorithm described in Section B and return the
obtained clustering.

Claim E.1. The following bound holds: Prlu € Y;] < nkPlu € C;].
Proof. By Lemma D.2, Pr[u € O] < nk. Thus,
Priu e ;] =Prju € Y; | u € O]-Prju € O] < nkPlu € C;]. (11)

=P, [ueCy] <n

27

Lemma E.2. The algorithm fails with probability at most /5.

Proof. By Lemma D.2, Prju € X;] < Plu € C;] and by Claim D.1, Pr[u € Y;] < nkPlu € Cy] for
every u € V. Thus,
E|Xl’ = Z Pr[u S X@] < Z P[u € Cl] = n;,
ueV ueV
E|Y;| = nk Z Prlu € Yi] < nk Z Pr[u € Yi] = nkn,.
ueV ueVvV

By Markov’s inequality Pr [|X;] > loini] < 15 and Pr[|Y;] > %2"’] < 165~ Thus, by the union
bound:

or |Y;| >

10k n; 10k2 n;
13

Pr [[Xz| > for some 7,] < % O

Denote the event — “algorithm succeeds” — by S and the indicator of this event by 1[S]. By
Lemma E.2, we have Pr[S] > 1 — ¢/5. We now bound the expected cost of clustering when the
algorithm succeeds.

Theorem E.3. The expected cost of the clustering X1 U Yy, ..., Xi UYy is at most

3(y+9) 30mk?
3 +

n €

Proof. The expected cost of clustering X1 U Y7, ... X, U Yy equals:

;E[l{s} Sy Aijduv] = %E [1{5} >33 Aijduv] (12)

OPTLPI + () OPTLPH-

1,j ueX;UY; 4, ueX;
veX;UY; veEX;
1
+E[l{5} . Z > Azjdm} + 21@{1{5} . Z > Aijdm}:|.
] ueXz] ueYz
veY; vEY;

By Lemma D.2, the first term on the right-hand side is bounded by OPTrp, + 3(7;{5) OPTrp,,. We

now upper bound the second term. To this end, we prove an analog of Lemma B.1.
Claim E.4. We have

k
Z Z Aijduv S Z A1]|: Z |Y}‘ duci/\j + Z ’X7,| dvci/\j:| . (13)

1, ueX; 3,j=1 ueX; veY;
veY;

Proof. For u € C; and v € C}, we have dy, < dye, n T de, jv- Lhus,

k k
Z Z Aijdu'u < Z Z Aij (duci/\j + dCij)

1,7=1ueX; ,j=1ueX;
veY; veY;
k k
= E E Aij ducmj + g g Aij dvci/\j
1,7=1ueX; 1,7=1ueX;
veY; veYj
k k
= E E |Y}|AU duci/\j + E E |XJ|AU dUCi/\j' O
ij=lueX; i,j=1veY;

28

10kn,; 10nk3n;
" and |Y;] < =2, Thus,

k
E[l{S} DDA duv] <> AGE 1{3} > Yildue,, + 1{S} D IX; |ducm}

If the algorithm succeeds, then for each j, | X;| <

©,j ueEX; i,j=1 ueX; u€eYj
veYj
k
10nkn,; 10kn;;
< AGE| 3 P+ 3 |
4,j=1 “ueX; u€eY;
10k
= n]A Z(nk Prlu € X;] + Prlu € Yi]) dyc,,, | -

4,j=1 ueV

Now, by Lemma D.2, Pr[u € X;] < Plu € C;] and by Claim E.1 Pr[u € Y;] < nkP[u € C;]. Thus:

k
E[l{S} . Z Z Aij dm,:| < 137]{ ninj |:Z 277k3 Pu[u S CZ] duci/\j:|

1,J u€X; 3,j=1 ueV
veYj
20nk?
_ 20 ZZP [u € Cj] {ZAM u]
=1 ueV
20nk? .
= Z Z Py lu € Cy] Fi(u,)
i=1 ueV
20mk?
- Z OPTyp,,,

where Fii(u, i) is defined in Equation (4).

We now bound the third term in (12). Using the triangle inequality and then rearranging terms
as in Claim E.4, we get

%E [1{8} > Aijduv:| < E[l{s} ‘ i 2 1%l 4y duc’“]'

i,J u€Y; i,j=1ueY;
veY;

We then replace |Y;| with an upper bound of 10nkn;/e and use that Pr[u € Y;] < nkPlu € C]
(Claim E.1),

[1{3} ¥ Awdw} <! "k {Z > nj Ay du]

.J uexij 1,j=1u€y;
veY;

IOnk Z Z nj Aij duc;,.; - Prlu € Y]

t,j=1ueV

k
Z Z nj Aij dUCz‘/\j : 77k']P)u[u S Cz]

',j—l ueV

10n2k2 Z Z Pylu € Ci] Fi(u,)

=1 ueV

10nk
€

<

B 10n2k2
e

OPTyp,,.

29

Since i < 1, the right hand side is less than L0nk? OPTrp,,. This concludes the proof. O

£

F Application: Hierarchical Clustering (HC)

We showcase how our general Metric Kernel Clustering framework (%) can be applied to a problem
where the goal is to find a hierarchy over clusters rather than a partition. In Hierarchical Clustering
(HC), given a set of points V', the goal is to bijectively map the points on the leaves of a tree 7.
Recall from Section 1, our concrete example with matrix As can be thought of as embedding the n
points on a ring. Here, we want to instead embed the n points to the leaves of a binary tree; and
to do so, we will pick an appropriate matrix A, and show why it allows us to get a PTAS.

Objectives for HC. There are several applications where we want to split data points into hier-
archies. Despite the rich literature on algorithmic methods (bottom-up agglomerative or top-down
divisive) to produce such hierarchies, there was a general lack of optimization desiderata in HC.
Dasgupta [2016] first defined an objective based on graph similarities and proved formal approxima-
tion guarantees for HC. This paved the way for a flurry of works in HC [Moseley and Wang, 2017,
Charikar and Chatziafratis, 2017, Cohen-Addad, Kanade, Mallmann-Trenn, and Mathieu, 2019,
Alon, Azar, and Vainstein, 2020] providing a better understanding to the theoretical underpinnings
of HC.

All of the proposed objectives in these works relied on the notion of a lowest common ancestor
(LCA) between two nodes. For two leaves i, j, let LCA (i, j) be the LCA of ¢ and j in tree 7. The
objectives used the size of LCA as a penalty factor for the cost of separating an edge; for example,
Dasgupta’s objective was to minimize the following expression over all binary trees 7T:

COSt(T) = Z wuv|LCAT(U’ U)|

u<v

For the motivation why this may be a good objective we refer the reader to Dasgupta [2016],
Cohen-Addad, Kanade, Mallmann-Trenn, and Mathieu [2019]. At a high-level, since the weight
w;; denotes similarities, we would like to preserve high similarity edges for as long as possible in
the hierarchical tree T, which means that ideally we should cut the edge i, j at the bottom levels
of the tree. These levels correspond to small-sized LCA. Notice that the term |[LCA7(i,75)| is a
number between 2 (lowest level of 7)) and n (at the root of the tree). Minimizing the cost tries to
preserve similar endpoints together and split only when their LCA is small.

HC Objective based on Depth. Instead of using the size of the LCA, here we study an
optimization goal for HC where the penalty term is defined based on the depth of the LCA. For
a node i € T, let h(i) denote the height of i in the tree, defined as the number of edges on the
shortest path from the root node and i (e.g. h(i) = 0 if 4 is the root node). Our objective is to
minimize the following expression over all binary trees 7T

H(T)= Y duh(LCAT(u,v)) (Depth-HC)

u,veV

Our objective corresponds to the fact that in a hierarchical tree representation of d(-, -) we would like
to separate the points that are far from each other early in the hierarchical structure, corresponding
to small values of h, because otherwise assigning these points to small subtrees would incur a high
cost.

30

Here, d is a metric, and we shall note that HC has been extensively studied for metric spaces,
with the goal of finding the best tree metric to fit the metric in the data [Agarwala, Bafna, Farach,
Paterson, and Thorup, 1998, Ailon and Charikar, 2005, Cohen-Addad, Das, Kipouridis, Parotsidis,
and Thorup, 2022a], or to speed-up linkage methods via approximate nearest neighbors data struc-
tures [Moseley, Vassilvtiskii, and Wang, 2021], or to find a tree that is competitive to k-center
objectives for multiple values of k simultaneously [Dasgupta and Long, 2005]. See Appendix F.1.

Generalized Depth-Based HC Objective In objective (Depth-HC), d,,, is multiplied by the
depth of LCA7(i,7). In general, dependence on the depth might be more complicated, i.e. we
consider the following objective:

Hp(T)= > duw f(W(LCAT(i,5))) (Gen-Depth-HC)
u,veV

for some fixed function f. A natural question is: for which functions f there exists a PTAS for this

objective? We show that, as long as f is monotone and satisfies the condition lim;_, % =1,
a PTAS exists (see Appendix F.2). Note that many natural functions, including all polynomial

functions, satisfy this condition.

Motivation from Graph Compression. When dealing with huge graphs, like the Internet
graph or social networks, finding a compact way of representing them is challenging. In fact, even
how to label the nodes in the graph is not obvious. Different labelings result in different storage
requirements. The reason is that how much we can compress a graph depends on how we label
its vertices. For example, compressing the Internet graph relies on several observations about how
webpages are organized made by Raghavan and Garcia-Molina [2003], Boldi and Vigna [2004].
First, pages that are proximal in the lexicographic ordering (on their URLs) tend to have similar
sets of neighbors, and second, many links are intra-domain, and therefore likely to point to pages
nearby in the lexicographic ordering. These are the similarity and locality principles respectively.
Analogous observations hold in social networks [Chierichetti, Kumar, Lattanzi, Mitzenmacher,
Panconesi, and Raghavan, 2009], as proximal users have similar sets of neighbors, and they have
empirically shown that taking such observations into account during vertex labeling and clustering
can result in significant memory savings.

An important idea in compression is the offset trick for vertex-edge representation: think of a
billion-sized graph and an edge connecting vertices a, b. Instead of storing the labels a, b explicitly
for this edge, we can store one of the labels, say a, and then the difference b — a. This simple trick
can save large amounts of space; for other examples and benefits of offset representations, see Boldi
and Vigna [2004]. The problem of finding the best labelings is often called graph reordering and is
a powerful technique to increase the locality of the representations of graphs. Many natural com-
binatorial optimization problems arise in this context, that mainly have to do with how to order
vertices on a line so as to minimize the density of edges across the labeled vertices. For example,
the classical NP-hard problem of Minimum Linear Arrangement [Charikar, Hajiaghayi, Karloff,
and Rao, 2010] is relevant in these applications. However, since the goal is to minimize storage
and storage is measured with the number of bits used, Minimum Logarithmic Arrangement and
Minimum Logarithmic Gap Arrangement were proposed in Dhulipala, Kabiljo, Karrer, Ottaviano,
Pupyrev, and Shalita [2016] as more accurate formulations of the compression problem. For exam-
ple, in Minimum Logarithmic Arrangement we try to minimize) plog|7(u) — 7(v)|, whereas
in Minimum Logarithmic Gap Arrangement we minimize the logarithm of consecutive gaps. As
noted in their paper, all three arrangement problems are quite different and they may have very
different optimal solutions, yielding different tradeoffs for compression.

31

Let’s return to our hierarchical clustering formulation (Depth-HC). Notice that the bits needed
for vertex and edge representations are related to the depth of a vertex in the hierarchy. A possible
encoding for example could be to store the left-right traversal for the path connecting a vertex to
the root; making sure that most similar vertices end up in nearby clusters ensures larger benefits
from using the abovementioned offset trick. Hence, our objective can be seen as trying to group
similar nodes together by explicitly minimizing the bits needed for their representation.

F.1 PTAS for Depth-Based Hierarchical Clustering

Consider a full binary tree 75 of depth log(1/e). Let £ = 1/e be a set of labels corresponding
to each of the leaves of this tree. Let the constraints be defined by a weight matrix with entries
A;j = h(LCA7(i,7)), i.e. if a point a gets assigned a label ¢ and a point b gets assigned a label
j in the CSP then the corresponding cost of this pair is h(LCA7, (4,7)). We denote this CSP as
CSPpce. As we show below, finding a (1 + €)-approximate solution to this CSP suffices in order to
get a (1 4) approximation for the hierarchical clustering objective above.

We next state our main lemma which bounds the total inter-cluster distance.

Lemma F.1. Consider an algorithm that builds a full binary tree by solving the corresponding

CSPre and then assigning the points to the leaves of a full binary tree To based on their labels in

the solution (splitting each leaf into binary subtrees randomly). If the solution to CSPgc is (1+¢)-

approzimate then the solution to the hierarchical clustering objective is (1 + O(g))-approzimate.
Let ~; denote the weight cut exactly at depth i. Then for t =logl/e:

Yt < 16:0PT

i=t
Using this lemma, we show our main result.

Theorem F.2. For any metric d, there exists a polynomial-time approzimation scheme for mini-
mizing the hierarchical clustering objective H(T).

Proof. By Lemma F.1, in the optimal tree, the cost associated with all internal nodes at depth at
least log 1/¢ is only O(¢)OPT. Hence, by (1 + ¢)-approximating the CSP ¢ which describes the
cost of the first log1/e levels in the optimum tree, we get a (1 + O(g))-approximation overall. []

Proof of Lemma F.1. Consider the optimum tree 7™ and fix a depth threshold ¢. First, note that
w.l.o.g. we can assume that T is a complete binary tree with some leaves potentially empty.

Proposition F.3. Let o be the total weight inside the subtrees at depth t and B be the cost con-
tributed by all LCA nodes at depth less than t, then:

B+at <OPT < B+a(t+1)

Proof. Consider splitting all subtrees at depth ¢ uniformly at random. Since a 1/2¢~'"!-fraction of
the weight has the least common ancestor at depth 7, the resulting expected cost is:

S eY
> g = (t+1a N

i=t

32

Recall that v; denotes the weight cut exactly at depth i. Let S denote the overall weight, i.e.
S =320 Let g = Z;;B Jvjand o = S — Z;;lo 7;. By Proposition F.3,

i—1 i—1 i—1 1
D+ S 7| SOPT<Y jy+G+1)|S=3
=0 j=0 j=0 7=

Rearranging the summations:

i—1 i—1
iS+) (j—i)y SOPT<(i+1)S+ > (j—i—1)y
j=0 j=0
Recall that OPT = Z]O'io J7vj and hence we have:
00 i—1
D <E+DS+Y (G—i— 1)y
§=0 §=0

00 i—1
=@ +1D)) vty (G—i-1y
§=0 j=0
i—1 0
=Y G+
j=0 J=i
Rearranging the terms in the above:
o0 [e.e]
G+1Y % =D i
j=i j=i

or equivalently:

[e.e]

v Y G—i—1)y

j=i+1
In particular, for ¢ = 1 this implies that v, > Zjoig (7 —2);-
Proposition F.4. For every i > 3 we have y; > 20 73;.

Proof. As shown above, we have v; > Z;’;?)(j — 2)v;, and by induction, we can show an even
stronger statement:

oo
N2 (it 1)y
Jj=t

The base case ¢ = 3 holds by the inequality above. Suppose we have the statement above for .

33

Then for i + 1 just substitute v; > 3772, ., (j — i — 1)7; on the RHS, and we have:

oo
N =273 (j—i+ 1)y
j=i

o0
=270 Y (i Dy + 2

G=i+1
oo oo
>278 N (i Dy 4270 Y (G —i— Dy
j=i+1 j=i+1
o
=272 > (G-
j=i+1
which is the inductive statement for the next index 7 + 1. O

Finally, let ¢ = log (1/¢€). By the proposition we have ; < 237%4;. Summing up this inequality
from ¢ to co we have:

o oo [o@)
Z% < Z 237y = 270y Z 2073 < 16ev, < 16¢ - OPT. O

i=t i=t 1=t

F.2 PTAS for the Generalized Depth-Based Objective

Our result from the previous section, which gives a PTAS for H(7), can be generalized to arbi-
trary functions of depth. In particular, we give a PTAS for the following generalized depth-based
objective:

= 3 du F(ALCAT(1,0))) (Gen-Depth-HC)
u,veV

Theorem F.5. For any monotone non-decreasing function f satisfying lim;_, oo D — 1 gnd a
metric space d there exists a polynomial-time approzrimation scheme for minimizing t (he hierarchical
clustering objective Hy(T).

Proof. We show that one can truncate the optimal tree at a certain level and then use our PTAS
for Weighted Metric Clustering up to this level and then split the resulting clusters randomly at
lower levels with only a slight increase in the cost.

Consider the optimal tree 7*. Similarly to the previous section, we can truncate the tree at
depth t*, which gives us 2¢" clusters, and then build a random tree for every resulting cluster. For
any u,v from the same cluster, edge (u,v) is cut with probability 27¢~! on level ¢* 4 i, and hence
the expected contribution of the edge (x,y) to the objective is

2 F(t 419)

duv 2H—1

On the other hand, using that f is monotone, the smallest possible contribution of this edge to the
objective is dy, f(t*). Hence, for any cluster C, the ratio of the expected contribution of the edge in

the random tree on C to its contribution in the optimal tree on C' is at most Z?io 2{£€*fJEZ)) Since

34

—— Depth-HC — Depth-HC

o
w
o

Dasgupta 0.40 Dasgupta
- 0.28 -
= =
5 5 0.35
20.26 a
£ £
& &
go0.24 g 0.30
o T
5 3
o 0.22 o
0.25
0.20
T T 0.20 +— T
102 103 10? 103
Subsample size Subsample size
—— Depth-HC — Depth-HC

Dasgupta

10%4 Dasgupta /_

1014 1091

1004

Running time (s)
Running time (s)

1014

1072 B
102 103 107 103
Subsample size Subsample size

Figure 3: Comparison of the depth-based objective (Depth-HC) and Dasgupta’s objective. Left
column: ZEBRAFISH GENE COUNTS dataset, right column: AMAZON REVIEWS dataset. Data points
correspond to averages over 10 runs, and error bars correspond to the 10% and 90% quantiles. For
both datasets, we subsample 100, 1000, and 5000 points.

limy o0 fgf;:)l) =1, for every ¢ there exists to such that f(t+1) < (1+¢)f(¢) for all ¢ > ¢;. Hence,
for t* > tg:
o0

Ft* +19) (1+¢) 1 1
221+1f t* ; 2i+1 (1 . (1+€)/2) 1—¢ +€+0(5)

Hence, there exists t* — which is a constant depending on f and € — such that approximating the
tree cost up to level t* suffices for approximating the total tree cost. Finally, similarly to the
previous section, we apply our main result on the distance matrix d and the cost matrix A such
that A;; = f(hij), where h;j is the depth of the LCA of clusters with indices ¢ and j. O

G Additional Experiments

We first describe the experimental setup used in Figure 2 from Section 6. The 20 NEWSGROUP
dataset used for the experiments consists of the documents. Each document belongs to one of
20 topics, organized in a two-layer hierarchical structure. The first layer of this structure has 7
nodes, which we use to recover the flat clustering of the documents. Finally, to compute distances
and similarities between the documents, we convert all the documents to the embedding vectors
(after removing redundant information, such as email addresses) using a pre-trained language model
initialized as SentenceTransformer(’all—MiniLM—L6—v2’).

In this section, we present our experiments on additional datasets in the same settings as in Sec-
tion 6. In Figure 3 experiments, we show the performance of our hierarchical objective (Depth-HC)
and the Dasgupta’s objective on ZEBRAFISH GENE COUNTS dataset [Wagner et al., 2018] and

35

airplane -
automobile -
bird -

cat -

deer -

dog -

frog -

horse -

ship -

truck -

Class

Cluster

Figure 4: Distribution of classes in the hierarchical clustering for CIFAR-10 dataset. For each class
(row), we show its distribution across the clusters (columns) in the hierarchical tree up to depth
6. For each class ¢ and cluster ¢, define ¢;; as the number of points in cluster j with class label 1.
Then, the intensity of (i, 7)-th cell’s color represents ch,“c t with black corresponding to value 1,

and white corresponding to value 0. Most of the classes are concentrated in small subtrees, which
shows that the hierarchical objective achieves good class separation

AMAZON REVIEWS dataset®. Similarly to Figure 2, (Depth-HC) significantly better recovers the
ground-truth clusters, and our algorithm for optimizing (Depth-HC) shows a slower growth rate.

Next, we present our experiments for CIFAR-10 test dataset (10* points) and the subset of the
Imagenet dataset where from each class we sample a single point (10 points).

For CIFAR-10, we build a tree up to depth 6, and in Figure 4 we show the distribution of
the classes across the resulting clusters. For most classes, the points from the same class tend to
group together in the tree: for example, for class “ship”, most of the points lie in clusters 16-23,
corresponding to a single subtree. Among these classes, the only ones with substantial intersection
are classes “automobiles” and “trucks”, which is due to the similarity between these classes.

For the small ImageNet dataset (10® images, one image per class), we build a hierarchy up to
depth 4 (larger depth provides better separation, but we limit the depth to 4 due to presentation
considerations). Then, we select the most common super-classes (for example, “terrier” is a super-
class for “Irish terrier”, “Tibetan terrier”, “silky terrier”, etc.) and show the allocation of images
corresponding to these super-classes. While the resulting clusters are sometimes mixed, there are
clear tendencies: clusters 7 and 12 (counting from left to right) mostly have dogs, cluster 4 has
shops and screens, and clusters 9-12 have bears, snakes, and spiders. The mixed results might
be attributed to the fact that the similarity between embeddings doesn’t precisely represent the
similarity between the images (since for classification purposes, it suffices to only separate different
classes) or due to the influence of the images outside of the sampled set.

In conclusion, for both datasets, hierarchical clustering according to the new hierarchical clus-
tering objective produces hierarchical trees with good class separation. Finally, the heuristic based
on the LPr; objective provides shows good empirical performance while being able to handle
reasonably-sized datasets.

Shttps://www.kaggle.com/datasets/kashnitsky/hierarchical-text-classification

36

https://www.kaggle.com/datasets/kashnitsky/hierarchical-text-classification

£, 1

.

W

EssEl

Figure 5: Sample images from a hierarchy built on the small ImageNet dataset. We build a hierarchy
on 10% images (one image per class), and we show allocation for the images corresponding to the
following super-classes: “terrier”, “hound”, “snake”, “bottle”, “shop”, “screen”, “spider”, “bear”.
For the sake of presentation, we only build a tree up to a depth 4. Empty branches correspond to
subtrees without sampled images

37

	Introduction
	Previous Work and Our Results
	Main Result

	Application to Hierarchical Clustering
	Sherali–Adams and Local Probability Distributions
	Making Point Distributions Nearly Independent

	Main Algorithm
	Experiments
	Conclusion
	Background on CSPs
	3-Approximation Algorithm
	Proof of Theorem 4.2
	Main Algorithm
	Outlier Assignment Algorithm
	Application: Hierarchical Clustering (HC)
	PTAS for Depth-Based Hierarchical Clustering
	PTAS for the Generalized Depth-Based Objective

	Additional Experiments

