Approximation Algorithms Problem set #2

The assignment is due Wednesday, May 10. Please, submit your work via Canvas.

Problem 1 (LP Duality).

- 1. Write dual LPs for the following linear programs:
 - a. minimize $4x_1 + 12x_2 + 2x_3$ subject to

$$x_1 + 5x_2 + 7x_3 \ge 20$$

$$x_1 + 3x_2 + 2x_3 \ge 11$$

$$2x_1 + x_2 \ge 16$$

$$x_2 + x_3 \ge 4$$

$$x_1, x_2, x_3 \ge 0$$

b. maximize 4x + y + z subject to

$$x + 2y \le 4$$

$$5x + 2y \le 7$$

$$2x + z \le 8$$

$$x, y, z \ge 0$$

Solve these linear programs and their duals using an LP solve (see page 3 for details). Present the results. Prove that the solutions you obtain are indeed optimal.

Problem 2 (Integrality Gap Example for Vertex Cover) The goal of this exercise is to construct an integrality gap example for the Vertex Cover problem. Let G be a complete graph on n vertices. Show that the optimum LP value for the standard LP relaxation is n/2. Prove that the LP integrality gap for Vertex Cover is at least 2 - o(1) as $n \to \infty$.

Problem 3 (Integrality Gap Example for Set Cover). The goal of this exercise is to construct an integrality gap example for Set Cover. Fix parameters n – the number of elements in the universe; $L = \lceil \log n \rceil$; $m = \lceil \sqrt{n} \rceil$ – the total number of sets; and p = C/L – the probability of including an element $v \in \{1, ..., n\}$ into a set (for some constant C).

Now, consider a collection of m random sets S_1, \ldots, S_m , where every set S_i is a subset of $\{1, \ldots, n\}$ containing each number $v \in \{1, \ldots, n\}$ with probability p. All sets S_i are chosen independently. Use the following steps to prove that the integrality gap of the Set Cover instance $(S_1, \ldots S_m)$ is $\Omega(\log n)$.

- 1. Obtain a bound on the probability that an element v is covered with less than mp/2 sets S_i (hint: use the Chernoff bound).
- 2. Using item 1, prove that with a high probability over the choice of the sets S_i the following statement holds: Each element $v \in \{1, ..., n\}$ is covered by at least mp/2 sets.

- 3. Show that there exists an LP solution of cost at most O(1/p) (with high probability). Denote the cost of solution by LP^* .
- 4. Prove that sets S_i cover the entire set $\{1, ..., n\}$ (with high probability).
- 5. Fix a subset of indices $I \subset \{1, ..., m\}$ of size at most $c LP^* \log n$ (for some constant c).
 - a. Show that for every $v \in \{1, ..., n\}$, the probability that v is covered by S_i with $i \in I$ (i.e., $v \in \bigcup_{i \in I} S_i$) is at most $1 n^{c'}$ for some c'.
 - b. Derive an upper bound on the probability that every element $v \in \{1, ..., n\}$ is covered by S_i with $i \in I$.
- 6. Estimate the number of subsets $I \subset \{1, ..., m\}$ of size at most $c LP^* \log n$.
- 7. Using items 5 and 6, prove that every solution to the Set Cover instance contains at least $c LP^* \log n$ sets (with high probability).
- 8. Conclude that the LP integrality gap of Set Cover is $\Theta(\log n)$.

Instructions on how to solve a linear program numerically

1. Write your problem in the LP CPLEX file format. Here is an example:

```
LP: maximize x + y

subject to

x + 2y \le 4
3x + 2y \le 7
x, y \ge 0
LP File:

\comments start with "\"

Maximize x + y

Subject to
x + 2 y <= 4
3x + 2y <= 7

Bounds
0 <= x
0 <= y
End
```

- 2. Submit your LP file to an LP Solver.
 - a. Go to the NEOS website: https://neos-server.org/neos/solvers/index.html
 - b. Pick Linear Programing → Gurobi → LP Input (you can also try CPLEX or MOSEK)
 - c. Upload your LP file and check the "Return .sol file" box.
 - d. Submit your job and wait a few minutes for the results.
- 3. You should get a solution in the following format:

Solved in 2 iterations and 0.00 seconds