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Abstract

We consider the following item pricing problem which has received much attention recently.
A seller has an infinite numbers of copies of n items. There are m buyers, each with a budget
and an intention to buy a fixed subset of items. Given prices on the items, each buyer buys his
subset of items, at the given prices, provided the total price of the subset is at most his budget.
The objective of the seller is to determine the prices such that her total profit is maximized.

In this paper, we focus on the case where the buyers are interested in subsets of size at
most two. This special case is known to be APX-hard (Guruswami et al [7]). The best known
approximation algorithm, by Balcan and Blum, gives a 4-approximation [2]. We show that there
is indeed a gap of 4 for the combinatorial upper bound used in their analysis. We further show
that a natural linear programming relaxation of this problem has an integrality gap of 4, even
in this special case. Then we prove that the problem is NP-hard to approximate within a factor
of 2 assuming the Unique Games Conjecture; and it is unconditionally NP-hard to approximate
within a factor 17/16. Finally, we extend the APX-hardness of the problem to the special case
in which the graph formed by items as vertices and buyers as edges is bipartite.

We hope that our techniques will be helpful for obtaining stronger hardness of approximation
bounds for this problem.

∗{rohitk, kimbrel, konstantin, sviri}@us.ibm.com.



1 Introduction

Many pricing questions in the IT industry stem from a specific cost structure: high fixed cost of
production, but near-zero or zero variable cost of production. This cost structure characterizes a
class of technology products which are collectively termed digital goods. Put differently, the cost
of producing the first unit of a digital good is very high, but the cost of producing each additional
unit is virtually zero. For instance, Microsoft spends hundreds of millions of dollars on developing
each version of its Windows operating system. Once this first copy of the OS has been developed,
however, it can be replicated at no cost. Other examples of digital goods are pay-per-view television
programs, downloadable audio files, etc.

In this paper, we consider a problem of pricing digital goods that has received a lot of attention
in the computer science community recently. Consider a monopolistic market with a single seller
who has n digital goods to sell. Since the variable cost of production is near-zero, we assume that
the seller has infinite copies of each good. Suppose that there are m buyers, each buyer i associated
with a fixed budget bi > 0, which is the maximum amount of money he is willing to spend. Each
buyer is interested in buying some bundles of digital goods. For example, a buyer may be interested
in buying an operating system together with an anti-virus software; but he may not be interested
in buying them separately.

We further focus on the case where each buyer is interested in exactly one subset of goods.
This setting is often referred to as a market with single-minded buyers. While this assumption may
seem unnatural, it turns out that even this special case is computationally hard for the optimization
problem we consider. The seller, who is assumed to know the demand and budget information, is
then posed with the following problem of pricing goods. The seller must set a price pj ≥ 0 for each
good j — she is not allowed to price the same item differently for different buyers. For a subset S
of goods, let p(S) =

∑

j∈S pj denote the total price of goods in S. Once the prices are fixed, each
buyer i buys his subset Si of items if its total price is at most his budget, i.e., p(Si) ≤ bi. If a buyer
i satisfies this condition, he pays p(Si) to the seller. If on the other hand, this condition is not
satisfied, buyer i buys nothing and pays nothing to the seller. In such a model, a natural objective
for the seller is to price the items so as to maximize the total profit generated, i.e., to find prices
{pj} so as to maximize

∑

i:p(Si)≤bi

p(Si).

1.1 Related work

The problem of profit-maximizing pricing of goods in unlimited supply was introduced by Goldberg,
Hartline, Karlin, Saks, and Wright [6]. In their setting, the buyers were interested in single goods
and hence the optimization problem was trivial, and they focused on designing truthful mechanisms
to maximize profit. There has been a lot of subsequent work on this and related models — below,
we briefly survey only those results that are directly relevant to the problem we consider.

Guruswami, Hartline, Karlin, Kempe, Kenyon, and McSherry [7] considered the problem of
profit maximization in a variety of settings, including single-minded bidders. They showed a log-
arithmic approximation guarantee and APX-hardness for the profit maximization problem. For
single-minded bidders, a polylogarithmic hardness result was obtained by Demaine, Feige, Haji-
aghayi, and Salavatipour [4]. The problem of the single-minded bidder case, where the size of the
bundles demanded by the buyers was at most k, was considered by Briest and Krysta [3] who gave
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an O(k2) approximation for the problem, and was improved by Balcan and Blum [2] to O(k). For
the special case of k = 2, they obtain a 4-approximation algorithm.

The case of k = 2 (also called as the graph pricing problem) can be thought of as the following
graph problem with goods as vertices and buyers as edges. Consider an undirected graph on n
vertices and m edges. There may be parallel edges and loops. Each edge e has a budget be ≥ 0.
Given prices pv ≥ 0 on the vertices v, an edge e = (u, v) is satisfied if pu + pv ≤ be. The goal
is to set the prices to maximize the total profit generated:

∑

e=(u,v)∈E:pu+v≤be
(pu + pv). The 4-

approximation algorithm of Balcan and Blum [2] for this case first reduces the problem to the
case where G is a bipartite graph by losing a factor of 2 in the approximation. It then gives a
2-approximation on the bipartite graphs. Recently, Krauthgamer, Mehta, and Rudra [12] focused
on the case k = 2 with further restriction that the budgets be are same for all the edges; but the
graph may have self-loops. In such a case, they gave an LP-rounding algorithm that yields an

approximation of 6+
√
2

5+
√
2
≈ 1.15. They also showed a matching integrality gap for these instances.

If we assume that the goods that are being sold are the edges of a graph and that buyers are
purchasing paths in this graph, we can interpret this as the problem of pricing network connections,
street segments (therefore termed the tollbooth problem [7]), or other types of transportation links
(e.g., railway or flight connections). If the underlying graph is just a line, then this problem is
called the highway problem [7]. Interestingly, even this very restricted variant turns out to be
intriguingly complex [3, 5, 7]. Hartline and Koltun [10] have presented a near-linear-time FPTAS
for the practically relevant case that the number of goods for sale is a fixed constant.

1.2 Our results and techniques

In this paper, we focus on the graph pricing problem described above. The bundles of the buyers
have at most two goods each, i.e., k = 2.

We first prove that the problem is hard to approximate within a factor of 2 assuming the Unique
Games Conjecture, and within a factor of 17/16 assuming P 6= NP . To this end, we introduce a
new problem which we call the Restricted Maximum Acyclic Subgraph problem: we are given a
directed graph and our goal is to arrange its vertices on the real line so as maximize the number
of forward edges. However, unlike the Maximum Acyclic Subgraph problem, we can place every
vertex v only in a specified set of positions Sv (see Section 2 for details). We show that the Graph
Pricing problem is at least as hard to approximate as the Restricted Maximum Acyclic Subgraph
problem (in Section 3). This immediately gives us a lower bound of 2, since Restricted Maximum
Acyclic Subgraph is a special case of Maximum Acyclic Subgraph, which as was recently shown by
Guruswami, Manokaran, Raghavendra [8], is hard to approximate within a factor of 2 assuming
the Unique Games Conjecture.

The Restricted Maximum Acyclic Subgraph problem is also a special case of MAX DICUT
on directed acyclic subgraphs. We can show that MAX DICUT on directed acyclic subgraphs is
at least as hard to approximate as MAX CUT. (We omit the proof from this extended abstract.)
This gives us an unconditional NP-hardness of 17/16. The inapproximability of MAX CUT was
established by H̊astad [11].

Then we initiate a study of several algorithmic approaches that might improve the approxi-
mation guarantee. Note the following trivial upper bound on the value of the optimal solution:
allow each node v to collect its maximum profit R(v) from the incident edges assuming that all its
neighbors are priced at 0. The overall upper bound on the optimum solution is then

∑

v R(v). This
observation was used by Balcan and Blum [2] in their approximation algorithm that computes a
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solution of value at least 1
4

∑

v R(v), and thus gives a 4-approximation. It was not known however
whether this analysis of the algorithm could be improved. We show that this upper bound indeed
has a gap of 4. Therefore new upper bounds are required to get a better approximation factor.

A natural linear programming relaxation (LP) gives such an upper bound. This linear program
can be thought of as a generalization of the one used by Krauthgamer, Mehta and Rudra [12] to
the case of arbitrary budgets. Unfortunately, it turns out that this LP also has an integrality gap
of 4. The proof again uses our reductions from Restricted Maximum Acyclic Subgraph and MAX
DICUT on directed acyclic subgraphs. We take a directed acyclic graph G = (V,A) in which every
directed cut contains at most a (1/4 + o(1)) fraction of all edges. (A family of such graphs was
recently constructed by Alon, Bollobàs, Gyàrfàs, Lehel, and Scott [1].) We show how to transform
G to an instance of the Graph Pricing problem whose solutions correspond to directed cuts in
G. Therefore, every combinatorial solution to this instance has value at most (1/4 + o(1))|A|.
Meanwhile, there is an LP solution that collects a profit 1 from every edge, and thus has value |A|.
We describe this transformation and its analysis in Section 3.2.

Finally, we analyze the bipartite case. Note that if we improved the algorithm for bipartite
graphs, we would get an improvement over the 4-approximation of Balcan and Blum for general
graphs. In particular, if we could solve the problem for bipartite graphs exactly, we would get
a 2-approximation for general graphs. Unlike the general case of the graph pricing problem, the
bipartite case was not even known to be NP-hard. We show that it is in fact APX-hard by a
reduction from MAX CUT. We present the proof in the Appendix.

On Hypergraph Pricing. After this paper was published at APPROX 2009, Guruswami,
H̊astad, Manokaran, Raghavendra and Charikar [9] extended the results of Guruswami, Manokaran,
and Raghavendra [8] and showed that every ordering k-CSP is approximation resistant. Using the
new result, our proof immediately gives a hardness of (k − ε) for the hypergraph version of the
graph pricing problem (k is the size of the hyperedge). Instead of the reduction from the Maximum
Acyclic Subgraph problem, we need to use a reduction from the ordering problem with constraints
u > v1,. . . , u > vk−1. This problem is hard to approximate up to a factor of k − ε, because the
problem is approximation resistant [9] and the random assignment satisfies such a constraint with
probability 1/k.

2 Preliminaries

Let us fix some notation. An instance of the Graph Pricing problem Π = (G, b) is a pair consisting
of a graph G = (V,E) and a set of budgets {be}, e ∈ E. Throughout the paper we assume that
the budgets are positive integers and that the graph does not have parallel edges or self-loops. A
solution of the problem is an arbitrary assignment of prices to the vertices, i.e., a set of nonnegative
real numbers {pv}v∈V . The profit of the solution is

profitΠ(p) =
∑

e=(u,v)∈E

{

pu + pv, if pu + pv ≤ be;

0, otherwise.

We denote the profit of the optimal solution by OPTΠ:

OPTΠ = max
pv∈R+∪{0}

profitΠ(p).
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In the proof we consider a more general version of the Graph Pricing problem, in which the
graph may have parallel edges and edges are weighted. We denote the weight of an edge e by we.
We define the profit of a solution {p̃v}v∈V of the generalized problem Π̃ = (G̃, b̃) as

profitΠ̃(p̃) =
∑

u,v

∑

e∈E(u,v)

we

{

p̃u + p̃v, if p̃u + p̃v ≤ b̃e;

0, otherwise;

here E(u, v) denotes the set of edges going from u to v. We shall show that the Generalized Graph
Pricing problem, even if we allow budgets and weights to be exponential in the number of vertices,
is not harder than the standard Graph Pricing problem.

The Generalized Graph Pricing problem is a special case of the general constraint satisfaction
problem with constraints depending on two variables (MAX 2GCSP). In our case, the variables are
vertices; the constraints or payoff functions are functions

fb̃e(p̃u, p̃v) =

{

p̃u + p̃v, if p̃u + p̃v ≤ b̃e;

0, otherwise.

Strictly speaking, prices can be arbitrary nonnegative real numbers, and thus the domain is infinite.
However, if all budgets are positive integers in the range from 1 to B, then the prices in the optimal
solution are semi-integral numbers in the range from 0 to B.

Lemma 2.1. Consider an instance Π = (G, b) of the Generalized Graph Pricing problem. Suppose
that the budgets {be} are integers in the range from 1 to B, then prices in one of the optimal
solutions are semi-integral numbers in the range from 0 to B.

Proof sketch. Consider an arbitrary optimal solution {pv}v∈V . Let E
′ be the set of satisfied edges:

E′ = ∪u,v {e ∈ E(u, v) : pu + pv ≤ be} .

Then {pv}v∈V is a solution of the LP: maximize
∑

u,v

∑

e∈E′∩E(u,v) pu+pv subject to pu+pv ≤ be for

all u, v, and e ∈ E′ ∩E(u, v). The LP is semi-integral and thus either all the pv’s are semi-integral
numbers or another solution with the same objective value is semi-integral.

Since we consider only problem instances with integral budgets, we shall assume that all prices
are semi-integral. Then the domain size equals 2B +1. Note that we could reduce the domain size
even further to O(log(1+ε)B) = O(log(B)/ε) by rounding prices down to powers of (1 + ε). This
reduces the profit of the solution, but by no more than a factor of (1 + ε).

We now show how to transform an arbitrary Generalized Graph Pricing instance Π̃ = (G̃, b̃) to an
unweighted Graph Pricing instance Π = (G, b) without parallel edges. We use a relatively standard
probabilistic construction that works for arbitrary constraint satisfaction problems. Without loss
of generality we assume that the maximum weight is 1.

Input: an instance of Generalized Graph Pricing problem Π̃ = (G̃ = (Ṽ , Ẽ), b̃); a positive ε
Output: an unweighted instance of the Graph Pricing problem Π = (G = (V,E), b)

• Let m be the total number of edges in the graph G̃; let w be the minimum (non-zero) edge
weight.
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• Set N = ⌈m/(wε)⌉4.

• For every vertex v of the graph G̃, create N new vertices v1, . . . , vN in the graph G.

• For every edge e between vertices u and v add an unweighted edge between ui and vj with
probability αe = εwe/m. Set the budget of the new edge to be b(ui,vj) = b̃e. We call this edge
a copy of e.

• If an edge (ui, vj) is a copy of e and e′ (e 6= e′) then remove (ui, vj) from G.

Lemma 2.2. Consider an instance of the Generalized Graph Pricing problem Π̃ = (G̃ = (Ṽ , Ẽ), b̃)
and an instance of the of the Graph Pricing problem Π = (G = (V,E), b) obtained via the reduction
above. Let γ = εN2/m. Then G is an unweighted graph without parallel edges; and with probability
1− e−N ,

OPTΠ

γ OPTΠ̃

= 1 +O(ε).

We defer the proof to the Appendix.

Corollary 2.3. Fix a positive integer B. Suppose that it is NP-hard to approximate the Generalized
Graph Pricing problem within a factor of ρ if all budgets are bounded by B. Then for every positive ε,
it is NP-hard to approximate the Graph Pricing problem within a factor (1−O(ε))ρ.

Proof. Consider an instance Π̃ = (G̃, b̃) of the Generalized Graph Pricing problem with budgets
bounded by B. Let m be the number of edges in the graph G̃. Rescale all weights so that the
maximum weight equals 1. Remove all edges with weight less than εm/B. This decreases OPTΠ

by at most ε. We now transform the instance Π̃ to Π using the reduction from Lemma 2.2. By
Lemma 2.2, OPTΠ̃ = (1 + O(ε))OPTΠ/γ. Thus it is NP-hard to approximate the Graph Pricing
problem within a factor (1−O(ε))ρ.

Theorem 2.4. Suppose that it is weakly NP-hard to approximate the Generalized Graph Pricing
problem within a factor of ρ (i.e. it is NP-hard to approximate the problem within a factor of ρ
when the budgets and weights can be exponentially large in the problem size). Then, assuming the
Unique Games Conjecture, for every positive ε, it is NP-hard to approximate the Graph Pricing
problem within a factor (1−O(ε)ρ).

Proof. We show that there exists a finite set of budgets B such that if we require all budgets to
be from the set B, then the Graph Pricing problem is NP-hard to approximate within a factor of
(1 − O(ε))ρ. This is an easy corollary from the recent result of Raghavendra [13]. Raghavendra
showed that, assuming the Unique Games Conjecture, the best approximation ratio we can achieve
for every 2GCSP problem Λ is at least the integrality gap of the problem Λ (up to any positive
constant ε). The problem Λ is defined by a finite set of possible payoff functions and their finite
domain.

As mentioned above, we may assume that prices take values in a domain of size O(log(B)/ε).
Write the standard assignment SDP relaxation for the Generalized Graph Pricing problem (see e.g.
Raghavendra [13] SDP (I)). This SDP can be solved in polynomial time. Thus its integrality gap
is (1 − O(ε))ρ. Fix an integrality gap example with gap (1 − O(ε))ρ. Let B = {1, . . . , B} be the
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set containing all budgets from this example. We now consider MAX 2GSP with the set of payoff
functions {fb}b∈B and domain {0, 1/2, 1, . . . , B}. Its integrality gap is at least (1 − O(ε))ρ. Thus
by Raghavendra’s theorem [13], it is NP-hard to approximate this MAX 2GCSP problem within
a factor (1 − O(1))ρ. However, this MAX 2GCSP problem is just the Generalized Graph Pricing
problem with budgets bounded by the constant B.

3 Reduction from Maximum Acyclic Subgraph

We introduce a new problem, which we call Restricted Maximum Acyclic Subgraph. We are given
a graph G = (V,A) and a collection of disjoint label sets Sv ⊂ N for all vertices v. The goal is
to assign a label lv from the set Sv ∪ {0} to every vertex v so as to maximize the number of arcs
(u, v) ∈ A for which lu < lv. The value of a solution is the number of such arcs. We denote the value
of the solution {lv}v∈V by value(G,S)(l); we denote the value of the optimal solution by OPT(G,S).

We now reduce the Restricted Maximum Acyclic Subgraph problem to the Generalized Graph
Pricing problem. Given an arbitrary Restricted Maximum Acyclic Subgraph instance G = (V,A),
{Sv}v we construct an instance of the Generalized Graph Pricing problem Π = (H, b) as follows.
The vertices of the graph H = (V,E) are the vertices of the graph G. The edges are triples (u, v)l,
where (u, v) ∈ A and l ∈ Sv. The edge (u, v)l goes from u to v, has weight M−l and budget
M l(1 + 1/M), where M is a sufficiently large number we specify later. It is convenient to think
that the edges are directed; whenever we write (u, v)l we mean that (u, v) ∈ A. The profit of a
solution {pv}v∈V equals

profitΠ(p) =
∑

(u,v)l∈E
pu+pv≤M l(1+1/M)

M−l(pu + pv).

We define the principal profit of the solution as

∑

(u,v)l∈E
pu+pv≤M l(1+1/M)

M−lpv;

and the principal profit of an edge (u, v)l as M
−lpv. We say that a solution {pv}v∈V is canonical if

pv ∈ {0} ∪
{

M l : l ∈ Sv

}

for all v. Every solution {lv}v∈V of the Restricted Maximum Acyclic Subgraph problem corresponds
to a canonical solution of the Generalized Graph Pricing problem:

pv =

{

M lv , if lv 6= 0;

0, otherwise.

The principal profit of this solution satisfies

∑

(u,v)l∈E
pu+pv≤M l(1+1/M)

M−lpv ≥
∑

(u,v)∈A
pu+pv≤M lv (1+1/M)

M−lv ·M lv =
∑

(u,v)∈A

{

1, if lv > lu;

0, otherwise;
= value(G,S)(l).
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Thus profitΠ(p) ≥ value(G,S)(l); and OPTΠ ≥ OPT(G,S). We now show that OPTΠ cannot be much
bigger than OPT(G,S). First, we show that the principal profit of every solution almost equals the
total profit.

Lemma 3.1. The profit of an arbitrary solution {pv}v∈V of the Generalized Graph Pricing problem
Π = (H, b) defined above is bounded as follows:

profitΠ(p) ≡
∑

(u,v)l∈E
pu+pv≤M l(1+1/M)

M−l(pu + pv) ≤
∑

(u,v)l∈E
pu+pv≤M l(1+1/M)

M−lpv + 2n.

Proof. We need to show that
∑

(u,v)l∈E
pu+pv≤M l(1+1/M)

M−lpu ≤ 2n.

Fix a vertex u. All its outgoing edges have distinct weights and all weights are powers of M .
Thus the sequence M−lpu (where (u, v)l ∈ E; pu ≤ M l(1 + 1/M)) is a subsequence of a geometric
progression with the largest term at most (1 + 1/M). Hence

∑

v:(u,v)l∈E
pu+pv≤M l(1+1/M)

M−lpu ≤ (1 + 1/M)

∞
∑

l=0

M−l ≤ 2.

We now show how every Generalized Graph Pricing solution can be transformed into a canonical
solution.

Lemma 3.2. For every solution {pv}v of the problem Π defined above there exists a canonical
solution {p′v}v with the principal profit

∑

(u,v)l∈E
p′u+p′v≤M l(1+1/M)

M−lp′v ≥
∑

(u,v)l∈E
pu+pv≤M l(1+1/M)

M−l(pu + pv)− (m/M + 2n).

Proof. Define

p′v =

{

M l, if M l−1(1 + 1/M) < pv ≤ M l(1 + 1/M) for some l ∈ Sv

0, otherwise

We compare the principal profit of {p′v}v∈V with the principal profit of {pv}v∈V . Consider an
edge (u, v)l with a nonnegative contribution to the profit of {pv}v∈V . Then pu+pv ≤ M l(1+1/M)
and both p′u, p

′
v ≤ M l. Moreover, since l ∈ Sv and thus l /∈ Su (the sets Su and Sv are disjoint),

p′u ≤ M l−1. Therefore p′u + p′v ≤ M l(1 + 1/M). If pv > M l−1(1 + 1/M), then p′v = M l; and the
principal profit of the edge is M−lp′v = 1. If pv ≤ M l−1(1+ 1/M), then M−lpv < 2/M . Hence, the
difference M−lpv −M−lp′v is always less than 2/M . We get

∑

(u,v)l∈E
pu+pv≤M l(1+1/M)

M−lpv ≤
∑

(u,v)l∈E
p′u+p′v≤M l(1+1/M)

M−lp′v + 2m/M ;
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and by Lemma 3.1,

∑

(u,v)l∈E
pu+pv≤M l(1+1/M)

M−l(pu + pv) ≤
∑

(u,v)l∈E
p′u+p′v≤M l(1+1/M)

M−l(p′u + p′v) +m/M + 2n.

Theorem 3.3. Consider an instance (G = (V,A), S) of the Restricted Maximum Acyclic Subgraph
problem. Let Π = (H = (V,E), b) be the instance of the Graph Pricing problem obtained through
the reduction described above. Then

OPTRMAS
(G,S) + 2m/M + 2n ≥ OPTΠ ≥ OPTRMAS

(G,S) . (1)

Proof. We have already proved that OPTΠ ≥ OPTRMAS
(G,S) . Thus we only need to prove the first

inequality. Consider an arbitrary solution {pv}v∈V . By Lemma 3.2 there exists a canonical solution
{p′v}v with the principal profit

∑

(u,v)l∈E
p′u+p′v≤M l(1+1/M)

M−lp′v ≥
∑

(u,v)l∈E
pu+pv≤M l(1+1/M)

M−l(pu + pv)− (m/M + 2n).

Set labels lu as follows: lu = logM pu if pu 6= 0; and lu = 0 otherwise. If the principal profit of
an edge (u, v)l is greater than 1/M then pv = M l and pu ≤ M l−1. Thus lu ≤ lv and the arc (u, v)
contributes 1 to the value of solution. We get

OPTRMAS
(H,S) +m/M ≥

∑

(u,v)l∈E
p′u+p′v≤M l(1+1/M)

M−lp′v ≥
∑

(u,v)l∈E
pu+pv≤M l(1+1/M)

M−l(pu + pv)− (m/M + 2n).

Hence
OPTRMAS

(H,S) + 2m/M + 2n ≥ OPTG.

3.1 UG Hardness

Theorem 3.4. Assuming the Unique Games Conjecture, it is NP-hard to approximate the Graph
Pricing problem within a factor 2− ε, for every positive ε.

Proof. Guruswami, Manokaran, and Raghavendra [8] showed that it is NP-hard to approximate
the Maximum Acyclic Subgraph problem within a factor of 2 − ε. Observe that the Maximum
Acyclic Subgraph problem is a special case the Restricted Maximum Acyclic Subgraph problem,
where sets Sv are chosen so that any ordering of vertices is possible. Hence, by Theorem 3.3 we
can transform any graph G to an instance of the Generalized Graph Pricing problem Π satisfying

OPTMAS
G + 2m/M + 2n ≥ OPTΠ ≥ OPTMAS

G ,

where OPTMAS
G denotes the size of maximum acyclic subgraph in G. Assume for a moment that

2m/M +2n ≤ ε OPTMAS
G . Then (1+ ε)OPTMAS

G ≥ OPTΠ ≥ OPTMAS
G ; and thus the Generalized
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Graph Pricing problem is NP-hard to approximate within a factor of 2−O(ε). Theorem 2.4 implies
that the Graph Pricing problem is then also NP-hard to approximate within a factor of 2−O(ε).

We now take care of the term 2m/M + 2n. We replace every vertex v in G by K = ⌈1/ε⌉ new
vertices v1, . . . , vK and every edge (u, v) with K2 edges (ui, vj). The number of vertices in the graph
increases K times; the number of edges and the size of the maximum acyclic subgraph increases
exactly K2 times. (Since vertices v1, . . . vK have exactly the same neighbors they can be arranged
consecutively in the optimal solution.) Pick M = mK2. Then 2m/M + 2n ≤ 2 + εOPTMAS

G .

3.2 LP Integrality Gap

We study the following LP relaxation:
∑

(u,v)∈E

∑

q,s
q+s≤b(u,v)

(q + s)yuv(q, s),

subject to
∑

q

xu(q) = 1 for all u (2)

∑

s

yuv(q, s) = xu(q) for all u, v, q (3)

yuv(q, s) = yvu(q, s) for all u, v, q, s (4)

0 ≤ xu(q) ≤ 1 for all u, q (5)

0 ≤ yuv(q, s) ≤ 1 for all u, v, q, s (6)

In the intended integral solution, each xu(q) is the indicator variable of the event “the vertex u has
price q,” i.e., xu(q) = 1, if pu = q; yuv(q, s) = 1, if u has price s, v has price q; and is equal to 0,
otherwise. It is easy to see that in the intended integral solution all the constraints are satisfied.
As before we assume that budgets {be}e∈V are integral and indexes q,s take semi-integral values in
the range 0 to maxe be. Note that the LP upper bound on the optimal solution is stronger than the
combinatorial upper bound of Balcan and Blum (see the introduction). Indeed, for all u, we have

∑

v

∑

q,s:q+s≤b(u,v)

yuv(q, s)× q ≤
∑

q

xu(q)
∑

v:q≤b(u,v)

q ≤ max
q

∑

v

f(u,v)(q, 0) = R(u).

Our LP integrality gap example is based on the construction of Alon, Bollobàs, Gyàrfàs, Lehel,
and Scott [1].

Theorem 3.5 (Alon et al. [1]). There exists a directed acyclic graph G having m edges and n = o(m)
vertices, such that every directed cut of G contains at most (1/4 + o(1))m edges.

Theorem 3.6. The integrality gap of the LP is (4− ε), for every positive ε.

Proof. Let G = (V,A) be the graph of Alon et al. [1]. We order the vertices of G in the reverse
topological order. For every v ∈ V , let ov ∈ {1, . . . , n} be the position of the vertex v in the
ordering. Then if (u, v) ∈ A, ou > ov. Fix an integer parameter T . Construct an instance of the
Restricted Maximum Acyclic Subgraph problem on graph G. Set

Sv = {ov × T, ov × T + 1, . . . , ov × T + T − 1} .

9



For every edge (u, v) ∈ A, valid assignments of labels lu and lv that satisfy the inequality lu < lv
are lu = 0; lv ∈ Sv. Thus the value of any solution {lv}v∈V equals the size of the directed cut
between the sets {u : lu = 0} and {v : lv ∈ Sv}. Therefore, the optimal value of the solution is at
most (1/4+o(1))m. We transform (G,S) to an instance of the Generalized Graph Pricing problem
(using Theorem 3.3) and then to an unweighted instance of the Graph Pricing problem (using
Lemma 2.2). The profit of the optimal solution of the obtained problem Π = (H = (VH , EH), b) is
at most (1/4 +O(ε))m× γN2 (if we choose M to be sufficiently large).

We now describe an LP solution of value (1− 1/T )m× γN2. Recall that the vertices of H are
pairs in V × {1, . . . , N} denoted vi. The set of edges is a random subset of triples (ui, vj)l, where
(u, v) ∈ A, l ∈ Sv. The budget of (ui, vj)l is M

l. The probability that the edge (ui, vj)l is present
in the graph is α′

(ui,vj)l
= γ/(M lN2)(1−O(ε)). We choose edges, so that the graph does not have

parallel edges.
Set LP variables xvi(M

l) = 1/T , and xv(0) = 1/T for all vertices vi and l ∈ Sv. Note that
Sv contains exactly T − 1 elements, thus xvi(0) +

∑

l xvi(M
l) = 1. For every edge (u, v)l set

yuivj (0,M
l) = 1/T . Set all other yuivj (s, q) arbitrary to satisfy the LP constraints (e.g. yuv(M

l, 0) =

1/T ; yuv(M
l′ ,M l′) = 1/T for l′ 6= l).

If an edge (ui, vj)l is present in the graph, then its contribution to the LP objective function is
at least (0 +M l) × yuivj (0,M

l) = M l/T . Thus for every (u, v) ∈ A, the expected contribution of
all edges (ui, vj)l is at least

∑

l∈Sv

∑

1≤i,j≤N

(1−O(ε))γ

M lN2

M l

T
= (T − 1)×N2 ×

(1−O(ε))× γ

M lN2

M l

T
= (1 +O(ε)) ×

T − 1

T
× γ.

We have proved that for every positive ε, there exists a graph with the cost of the optimal
solution at most γm/4 × (1 + O(ε)) and the cost of the LP at least γm × (1 − O(ε)). Hence the
integrality gap is 4−O(ε).

Remark 3.7. A similar construction shows that the problem is (unconditionally) at least as hard
as MAX CUT, which as was shown by H̊astad [11] cannot be approximated better than within a
factor of 17/16 (unless P = NP ).
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A Proof of Lemma 2.2

Proof of Lemma 2.2. Consider an edge e between two vertices u and v in G̃. We add a copy of e
between ui and vj at step 4 with probability αe. The probability that we remove the edge at the
last step is less than αe × mαe ≤ ε. Thus the probability βe that the obtained graph G has the
edge (ui, vj) is between (1− ε)αe and αe.

Let Vu and Vv be arbitrary subsets of {ui : 1 ≤ i ≤ N} and {vj : 1 ≤ j ≤ N} respectively. De-
note by Ee(V

u,Vv) the set of copies of e going from Vu to Vv. The expected size of Ee(V
u,Vv) is

βe|V
u| |Vv|. By a Bernstein or Chernoff type inequality,

Pr
(

∣

∣|Ee(V
u,Vv)| − βe|V

u| · |Vv |
∣

∣ ≤ 4N3/2
)

≤ 2e
− 16N3

2(βe|Vu|·|Vv |+N3/2/3) ≤ e−4N .

The number of ways we can choose sets Vu and Vv is 22N . Thus, by the union bound, with
probability at least 1− e−2N , for all Vu ⊂ {ui : 1 ≤ i ≤ N} and Vv ⊂ {vj : 1 ≤ j ≤ N},

∣

∣|Ee(V
u,Vv)| − βe|V

u| · |Vv|
∣

∣ ≤ 4N3/2.

Moreover, since the number of edges m is less than eN , with probability 1− e−N > 0, for all u, v,
e ∈ E(Vu,Vv), Vu ⊂ {ui : 1 ≤ i ≤ N} and Vv ⊂ {vj : 1 ≤ j ≤ N},

∣

∣|Ee(V
u,Vv)| − βe|V

u||Vv |
∣

∣ ≥ 4N3/2. (7)
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We fix one of the random instances satisfying this condition. Given an arbitrary semi-integral
solution pvi of the problem Π, we define a probabilistic solution of the original problem Π̃ as follows:
for every vertex v pick a random i from 1 to N and set p̃v = pvi . For all v and all semi-integral q,
let Vv

q = {vi : p̃vi = q}. The probability that we assign price q to u and s to v equals |Vu
q ×Vv

s |/N
2.

Thus the expected profit of p̃ equals

E
[

profitΠ̃(p̃)
]

=
∑

u,v

∑

e∈E(u,v)

∑

q,s

|Vu
q ||V

v
s |

N2
× wefbe(q, s).

The profit of p equals

profitΠ(p) =
∑

u,v

∑

e∈E(u,v)

∑

q,s

|Ee(V
u
q ,V

v
s )| × fbe(q, s).

Thus,

profitΠ(p)− γ · E
[

profitΠ̃(p̃)
]

=
∑

u,v

∑

e∈E(u,v)

∑

q,s

(|Ee(V
u
q ,V

v
s )| − αe|V

u
q ||V

v
s |)× fbe(q, s).

By (7),

profitΠ(p)− γ · E
[

profitΠ̃(p̃)
]

≤
∑

u,v

∑

e∈E(u,v)

∑

q,s(|Ee(V
u
q ,V

v
s )| − βe|V

u
q ||V

v
s |)× fbe(q, s)

≤ m× 4N3/2 ×maxe be ≤ ε× γwmaxe be.

Since OPTΠ ≥ wmaxe be,
OPTΠ ≥ γ OPTΠ̃(1 +O(ε)).

Similarly, given a solution {pv}v∈V of the problem Π̃, we define a solution of Π as p̃vi = pv.
Then

(1− ε)
εN2

m
· profitΠ̃(p̃)− profitΠ(p) ≤

∑

u,v

∑

e∈E(u,v)

∑

q,s

∣

∣|Ee(V
u
q ,V

v
s )| − βe|V

u
q ||V

v
s |
∣

∣× fbe(q, s)

≤ m× 4N3/2 ×maxe be ≤ ε× γwmaxe be.

Thus,
(1− ε)OPTΠ̃ ≥ γ OPTΠ(1 +O(ε)).

B Hardness of the bipartite case

Balcan and Blum achieve a 4-approximation by reducing the general problem to the bipartite case,
and they note that any improvement over the trivial 2-approximation for the bipartite case would
immediately improve the 4-approximation for the general case. Here we show that the bipartite
case is APX-hard, which to the best of our knowledge was previously unknown.

Theorem B.1. The Graph Pricing Problem in the bipartite case is APX-hard.
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Proof. We reduce the well-known APX-hard problem MAX CUT to graph pricing in a bipartite
graph. Let G = (V,E) be a (general) graph. For each vertex u in V we will construct a vertex u in
our bipartite graph G′ = (V1, V2, E

′). For convenience we will refer to these corresponding nodes
using the same names. All the original nodes in G will be on the same side of G′, say V1. For each
edge (u, v) ∈ E we construct the gadget shown in Figure 1.

We now show that if u and v both charge 0 or both charge 1, the most profit that can be gained
from the gadget is 8, whereas profit 9 can be obtained if one charges 0 and the other charges 1. We
will later show how to make sure each of u and v charges either 1 or (almost) 0.

First suppose that both u and v charge 0. Note that the total budget of edges in the gadget
is 10. Thus if any edge with budget 2 has its budget exceeded, the profit is at most 8 and we are
done. On the contrary, some edge’s budget of 1 must be exceeded to collect more than 8, as follows.
Suppose w and x together charge at most 1 and also y and z together charge at most 1. Then these
4 nodes collect a total of at most 4 out of a possible 6 from the 4 edges on the cycle, since each
collects twice its charge from those edges, and the total profit is again at most 8. So now assume
some budget of 1 is exceeded. By symmetry we may assume the budget of edge (w, x) is exceeded.
If edge (y, z) also has its budget exceeded, again the remaining budget is only 8 and we are done.
Thus z can charge at most 1, so edge (z, v) pays at most 1 from its budget of 2, and in this last
case, again the total profit is at most 8.

Now suppose u and v each charge 1. Again note that if any edge with budget 2 has its budget
exceeded, the remaining budget is 8 and we are done, that some budget of 1 must be exceeded to
collect more than 8, and by symmetry we may assume it is (w, x). w and z charge some pw ≤ 1
and pz ≤ 1, y charges some py ≤ 1 − pz, and x charges some px ≤ 2 − pz. We may assume
pw = 1, py = 1 − pz, and px = 2 − pz since these can only increase profit and will not cause any
(more) budgets to be exceeded. Thus the total profit, vertex by vertex in alphabetical order, is
1 + 1 + 2 + (2− pz) + 2(1− pz) + 3pz = 8.

Finally, suppose u charges 0 and v charges 1. The total profit can be 9 as follows and by
symmetry the same will hold if these are reversed. It is easy to check that the total profit is 9 if w
charges 2, x and z charge 1, and y charges 0.

Unfortunately, profit greater than 8 can be extracted from our gadget via fractional charges
at u and/or v. To ensure that each node corresponding to a node in the original graph charges
either 1 or ε for some small ε, we use the gadget displayed in Figure 2. We will show that for any
solution, we can find a solution that satisfies this condition and whose value is at least that of the
given solution.

First we show that we can assume node a charges 0, as follows. We claim nodes a, b, c, and d
can together collect at most 4. It is easy to see that this can be achieved by those nodes charging,
respectively, 0, 1, 1, and 0. Suppose to the contrary that a charges some pa ≤ 1, since it is
trivial that a charge greater than 1 yields the claim. Note that if any edge’s budget exceeded,
the remaining budgets are 4 or less and we are done. Then, in order, the nodes collect at most
2pa + 2(1 − pa) + pc + (1 − pc) = 4, since a charge by b greater than 1 − pa breaks the budget of
edge (a, b), and of course c and d must not charge more than a sum of 1. Thus we can assume a,
and each of the corresponding nodes in the similar chains with budgets ε, etc., charge 0.

Now suppose v charges a value pv other than 1 or ε. If pv > 1, then clearly v collects at most
2 and we can reduce pv to 1, for which v collects 2. If ε ≤ pv ≤ 1/2, v collects at most 1, and by
changing pv to ε, v collects 1. Since we only decrease pv in these cases, we cannot break the budget
of (z, v). Now suppose pv < ε. We increase it to ε to bring the profit up to 1. This may force
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Figure 1: Bipartite pricing gadget. Note that despite the layout, u and v belong to the same side
of the bipartition.
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Figure 2: Price-enforcing gadget: node v charges 1 or ε.
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us to decrease pz by ε. We will account for this small error later. Finally, suppose 1/2 < pv < 1.
Suppose we increase pv by δ = 1 − pv. We must consider two cases. If pv + pz < 2, then pz can
remain unchanged and we only increase the total value. If pz+pv = 2, then we must decrease pz by
δ to avoid breaking the budget of (z, v). But in this case, pz > 1, so z’s incident edge with budget
1 is not paying. Thus z loses 2δ and v gains this same amount. (We may need to combine these
two cases in case pz + δ > 2; the details are straightforward.)

Finally note that whether v charges 1 or ε, the gadget contributes a fixed amount of 8 to the
total value of the solution. We attach this gadget to both ends of each edge (u, v), and thus if u
and v each charge ε or each charge 1, the total value contributed by the combination of gadgets is
approximately 24, whereas the value is approximately 25 if one charges 1 and the other ε.

For a node u of degree d, both gadgets are replicated for each of its edges. It is easy to see that
this still forces each node to charge either 1 or ε.

It should be clear now that (neglecting at most 2ε per edge), from a solution of value 24m+C
to our bipartite graph pricing instance, we can recover a cut of size C to the original MAX CUT
instance, wherem is the number of edges. We can make the error insignificant by appropriate choice
of ε. By the well-known APX-hardness of MAX CUT, we obtain the APX-hardness of bipartite
graph pricing.
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