
Online Make-to-Order Joint Replenishment Model: Primal Dual

Competitive Algorithms

N. Buchbinder∗ T. Kimbrel† R. Levi ‡ K. Makarychev § M. Sviridenko¶

Abstract
In this paper, we study an online make-to-order variant
of the classical joint replenishment problem (JRP) that
has been studied extensively over the years and plays a
fundamental role in broader planning issues, such as the
management of supply chains. In contrast to the traditional
approaches of the stochastic inventory theory, we study
the problem using competitive analysis against a worst-case
adversary.

Our main result is a 3-competitive deterministic algo-
rithm for the online version of the JRP. We also prove a
lower bound of approximately 2.64 on the competitiveness
of any deterministic online algorithm for the problem. Our
algorithm is based on a novel primal-dual approach using a
new linear programming relaxation of the offline JRP model.
The primal-dual approach that we propose departs from pre-
vious primal-dual and online algorithms in rather significant
ways. We believe that this approach can extend the range
of problems to which online and primal-dual algorithms can
be applied and analyzed.

1 Introduction

Inventory theory provides streamlined stochastic opti-
mization models that attempt to capture tradeoffs be-
tween opposing costs in managing the flow of multiple
types of goods through a supply chain. Uncertainty
about future demands is one of the prime features that
make inventory management problems very complex.
Most traditional stochastic inventory theory literature
assumes that the probability distributions of the future
demands are known, or at least partially known, as part
of the input. However, in many practical scenarios the
underlying probability distributions are not available.
Moreover, any attempt to create a distributional model
of the demands entails a significant risk of serious mis-
specification which may lead to very poor policies. To

∗Computer Science Department, Technion, Haifa 32000, Israel.
E-mail: nivb@cs.technion.ac.il

†IBM T. J. Watson Research Center, P.O. Box 218, Yorktown
Heights, NY 10598. kimbrel@us.ibm.com

‡Sloan School of Management, MIT, Cambridge, MA, 02139.
Part of this research was conducted while the author was a
postdoctoral fellow at the IBM, T. J. Watson Research Center.
retsef@mit.edu

§IBM T. J. Watson Research Center, P.O. Box 218, Yorktown
Heights, NY 10598. konstantin@us.ibm.com
¶IBM T. J. Watson Research Center, P.O. Box 218, Yorktown

Heights, NY 10598. sviri@us.ibm.com

overcome this fundamental difficulty, we propose an on-
line framework. We consider classical inventory models,
but under the assumption that the demands are revealed
to us online and are generated by a worst-case adver-
sary. In particular, we propose a primal-dual based al-
gorithmic approach that leads to policies with robust
performance under competitive analysis. Our main re-
sult is a 3-competitive deterministic online algorithm for
the online version of the classical JRP.

Our approach has significant contributions in at
least two important dimensions. First, to the best
of our knowledge, the concept of online algorithms
has not been applied to inventory management models
before. Moreover, we believe that the online framework
that we propose can be extended to other classical
inventory management problems. In particular, this
approach can be very effective in devising robust policies
that can be implemented under minimal knowledge
about the evolution of future demands. Secondly, our
online primal-dual approach is based on several new
algorithmic ideas that significantly depart from previous
primal-dual algorithms for offline problems and from
online algorithms. We believe that these ideas can
extend the range of problems to which online and
primal-dual algorithms can be applied and analyzed.

Our lower bound also employs a technique that is
not seen, to the best of our knowledge, in previous work
on related problems.

The joint replenishment model. In this paper,
we study the classical joint replenishment problem
(JRP) that has been studied extensively over the years,
and plays a fundamental role in broader planning issues,
such as the management of supply chains (e.g. [3,
15]). We consider the JRP model under a make-to-
order coordination mechanism, where the production
of finished goods is triggered only by actual demands,
and no finished goods are held in inventory [7, 10, 14].
This classical coordination mechanism is very common
in scenarios with highly customized finished goods and
high setup and changeover costs, for example in the steel
and glass industries. (The other common coordination
mechanism is make-to-stock, in which finished goods are
produced before the actual demand occurs, and then



kept in inventory.)
The details of the offline make-to-order JRP model

are as follows. A set D of demands for N different com-
modities is specified over a planning horizon of T dis-
crete periods. Each demand point (i, t) ∈ D requires cer-
tain number of units of commodity i, where i = 1, . . . , N
and t = 1, . . . , T . Since holding inventories is not al-
lowed, demand point (i, t) can be satisfied only from
orders placed in period t or later in time. At the begin-
ning of each period s = 1, . . . , T , we can place an order
for any combination of items, and this order can be used
to serve pending demand points that arrived in period
s or earlier in time. Each such order incurs a fixed joint
ordering cost K0, as well as a fixed item ordering cost
Ki for each item (commodity) i = 1, . . . , N included
in the order, regardless of the number of units being
ordered. The fixed ordering costs drive us to order in
large batches. This is traded off against delay penalty
cost, which captures the costs incurred by allowing de-
mand points to wait for some amount of time until they
are satisfied. For each demand point (i, t) and a poten-
tial order s ≥ t, we let wits be the corresponding late
penalty cost incurred by demand point (i, t), if served
from an order in period s. The only assumption is that,
for each single demand point (i, t), the delay penalty
cost wits is increasing in s. This includes the case in
which a demand point must be served within a speci-
fied time window after its arrival. (In this case wits = ∞
after the time window.) The goal is to find a feasible
ordering policy that minimizes the overall ordering and
delay penalty costs. The offline JRP model is known
to be NP-hard [2]. Recently, Levi, Roundy and Shmoys
have proposed a primal-dual 2-approximation algorithm
for the offline make-to-stock JRP model [15], and this
has been improved by Levi, Roundy, Shmoys and Sviri-
denko, who proposed a 1.8-approximation algorithm
using an LP-rounding approach [16]. (In the offline
make-to-stock JRP model there are holding costs for
maintaining physical inventory instead of delay penalty
costs. However, mathematically the make-to-stock and
the make-to-order offline models are equivalent, and all
the complexity results and algorithms can be transpar-
ently converted to the offline make-to-order variants.)
The special case of the offline joint replenishment prob-
lem with a single type of commodity, also known as
the single-item lot-sizing problem, is polynomially solv-
able via dynamic programming [18] or primal-dual al-
gorithms (for example, [11, 15]).

In the online make-to-order JRP model, the de-
mand points and the length of the planning horizon T
are not known in advance. Instead, demand points ar-
rive in an online manner, and the ordering decision made
in each time period s is based only on demand points

that arrived up to period s. We measure the perfor-
mance of our algorithms by the standard competitive
ratio between the cost incurred by the online algorithm
and the minimum cost obtained by an offline optimal
solution when the input is generated by a worst-case
adversary. The online single-item lot-sizing problem is
equivalent to the well understood TCP-acknowledgment
problem. Dooly, Goldman and Scott gave an optimal 2-
competitive deterministic algorithm for this problem [8].
Karlin, Kenyon and Randall gave an optimal e/(e− 1)-
competitive randomized algorithm [13]. Buchbinder,
Jain and Naor have recently proposed an analysis of
these algorithms using a primal-dual approach [4].

1.1 Our results and techniques The main result
of this paper is a 3-competitive deterministic algorithm
for the online make-to-order JRP model. In addition,
we obtain a lower bound of 2.64 on the competitive ratio
of any deterministic online algorithm.

The deterministic algorithm for the online TCP-
acknowledgement problem (or the online make-to-order
single-item lot-sizing problem) [8] is simply based on
balancing the ordering cost with the delay penalty
cost. We place an order whenever the cumulative delay
penalty cost of the currently pending demands exceeds
K, where K is the fixed ordering cost. However, it
can be shown that any straightforward extension of this
idea to the JRP model does not lead to algorithms
with bounded competitive ratio. The fundamental
problem is the choice of which items (commodities)
should be included once the decision has been made
to place a (joint) order. Intuitively, the dilemma is
whether to include in the order items for which the
current cumulative delay penalty costs are relatively
low. Including such items runs into the risk of incurring
high item ordering costs because of unnecessary orders
of these items; excluding them runs the risk of incurring
high joint ordering costs due to placing multiple orders,
each including only a small number of items. More
specifically, it is not clear whether the future arrivals of
demands will justify additional joint orders that can be
used to satisfy the currently pending demands of those
items. Instead it may be better to serve them from the
order placed in the current period.

We propose a primal-dual algorithm for the online
JRP model. The primal-dual approach is a well-studied
discipline in the design and analysis of optimization and
approximation algorithms. Buchbinder and Naor [5, 6]
have recently proposed a primal-dual framework for on-
line packing and covering problems. This framework in-
cludes, for example, a large number of routing and load
balancing problems, the online set cover problem [1], as
well as other problems. Recently, the framework was



shown applicable to several other interesting problems
[4]. As we shall discuss below, the algorithm we pro-
pose in this paper and the performance analysis require
new and more delicate algorithmic ideas (e.g., the sim-
ulation step that we describe below) that significantly
depart from previous work.

Our primal-dual approach is based on a novel linear
programming relaxation (LP) of the offline JRP model.
The LP and its dual program guide the decisions made
by the online algorithm. Specifically, we simultaneously
construct online both a feasible primal integer solution
and a feasible dual solution. We then show that the
cost of the primal solution is at most 3 times the cost of
the dual solution, obtaining a 3-competitive algorithm.
For intuition, it helps to think of the dual variables as
budgets that are being used to pay for the cost of the
primal solution, which consists of the joint ordering cost,
the item ordering costs and the delay penalty costs. The
budget of each as-yet-unknown demand point (i, t) is
0 until time t. Starting at time t, the corresponding
budget can change until this demand point is frozen.

We note that our primal-dual algorithm departs
from previously known algorithms in rather significant
ways. In particular, the online nature of the problem
requires several fundamentally different algorithmic ap-
proaches compared to primal-dual algorithms that were
previously designed for offline versions of the JRP model
[15], the facility location problem [12] and other combi-
natorial problems (e.g., [9]). For example, all of these
algorithms have a second clean-up phase, in which the
initial primal solution is modified to make it cheaper.
This is not possible in an online setting, and we need a
different approach.

Now we describe the main aspects of the new algo-
rithmic approach that we propose and contrast it with
the previous offline primal-dual algorithms. Joint or-
ders are placed when the budgets of a subset of de-
mand points are sufficient to pay the joint ordering cost
and the item ordering costs of a certain potential order,
as well as the resulting delay penalty costs incurred by
serving them from that order. (This corresponds to a
dual constraint becoming tight.) However, this poten-
tial order may be in the past, and because the problem
is online it can not be used anymore. Instead we place
an order in the current period, initially including all the
corresponding items, and freeze the budgets of all the
demand points that will be served by this order. As
already mentioned, the fundamental issue that arises at
this point is whether to include additional items in the
current order even though their current budgets are not
sufficient to pay for their respective item ordering costs.
This issue is handled through what we call a simula-
tion step. We temporarily increase the algorithmic time

indicator beyond the current time period, and adjust
the budgets of the active (not frozen) demand points
accordingly, assuming that no demand point will arrive
in future periods. Throughout this phase certain dual
constraints become tight and this guides the algorithm
in including additional items in the current order. How-
ever, at the end of the simulation step all the dual bud-
gets are decreased back to their original values at the
beginning of the simulation step, and the algorithmic
time indicator is again aligned with the current time
period. In particular, it is not guaranteed that the bud-
gets of the corresponding demand points will eventually
reach their simulation values. Thus, unlike most other
primal-dual approximation algorithms, our algorithm is
not dual ascent. That is, the budgets of certain demand
points can temporarily go up, and then be decreased,
and go up again, until they are frozen. Intuitively, one
can think of the simulation step as a ‘loan’ taken by the
algorithm to pay for additional orders of certain items.
It is not clear a-priori that it will be able to fully recap
this ‘loan’ in the future. Thus we need to make sure that
the ‘loan’ being taken is not too high; in other words, we
need to carefully monitor the simulation step and design
the right stopping rule. We believe that the concept of
the primal-dual simulation step will have applications
in other online and offline settings, and will extend the
applicability of primal-dual approximation and online
algorithms. In addition, unlike previous algorithms, the
performance analysis of our algorithm is not based on
showing how to use the dual budgets to pay the cost of
each order placed by the algorithm separately. Instead,
we use the algorithm to partition the orders into clus-
ters, and then show how to use the dual budgets to pay
for the overall cost of each cluster. Specifically, we show
that each dual budget is not used more than 3 times.

2 Preliminaries

In this section we formally define our problem. Let H =
{1, 2, . . . , N} be the set of item types (commodities). In
the JRP model the cost of an order does not depend on
the number of units ordered, but only on the item types
in the order. The cost of an order is composed of a joint
ordering cost denoted by K0 and a fixed item ordering
cost of Ki for ordering any number of units of item type
i. Thus, the cost of ordering a set S ⊆ {1, 2, . . . , N}
is C(S) , K0 +

∑
i∈S Ki. New demands arrive at

times t ∈ {1, 2, . . . , T} for some unknown T . Let
T = {1, 2, . . . , T} be the set of times in the planning
horizon. Each demand specifies some item type that is
needed. Let D be the set of demands. Each demand
is thus defined by a pair (i, t), where i is the item type
associated with the demand and t ∈ T is the arrival time
of the demand.



Every demand (i, t) ∈ D can be satisfied in any
time period s ≥ t after its arrival. The delay penalty
cost of satisfying demand (i, t) at time s is wits which
is an increasing function of s. It is convenient to view
the delay function in increments between each time s
and the subsequent time s + 1. Let ∆its ≥ 0 be the
additional penalty of delaying demand (i, t) from time
s until time s + 1. That is ∆its = wi,t,s+1 − wits.

2.1 Linear Program Formulation and Its Dual
It is not difficult to verify that there exists an optimal
offline solution that makes orders only at times at which
new demands arrive (i.e., times t ∈ T). To define a lower
bound on the optimal cost we start by formulating the
problem as a linear program whose minimum solution is
a lower bound on the optimal integral cost. We define
for each set S and time t ∈ T a variable x(S, t) that is
an indicator for the event of sending an order for the
types of S at time t. Let z(i, t, s) indicate the event
of delaying demand (i, t) from time s until time s + 1.
The cost of any offline algorithm can be described as the
linear cost function in line (2.1) below. The constraints
in line (2.2) stipulate that for any demand (i, t) and
time s greater than its arrival time, either the demand
has been served by some order prior to time s, or it
is delayed at time s. We omit the constraints that all
variables must be non-negative. Note that the numbers
of constraints and variables in this the LP formulation
are exponential with respect to the number of item
types. However, since our proposed algorithm never
updates the variables explicitly, it can be implemented
efficiently.

min

T∑
t=1

∑

S⊆{1,...,r}
C(S)x(S, t)(2.1)

+
∑

(i,t)∈D

∑

s≥t

∆its · z(i, t, s)

∀(i, t) ∈ D, s ≥ t :
s∑

τ=t

∑

S | i∈S

x(S, τ) + z(i, t, s) ≥ 1.(2.2)

Next, we define the dual linear programming formu-
lation for the primal linear program (2.1)-(2.2). Obtain-
ing the dual program can be done in a technical way by
defining a dual variable for any primal constraint, and
a dual constraint for any primal variable. However, the
dual program in this case has an intuitive meaning. In
the dual program we have a variable y(i, t, s) for each
demand (i, t) and time s ≥ t. The dual variable can
be interpreted as a budget. The objective of the dual
program is to maximize the total budget earned from
all demands. Constraint (2.4) states that the budget

earned by demand (i, t) between two consecutive times
is at most the delay it incurred between these two con-
secutive times. Constraint (2.5) stipulates that the to-
tal budget earned by demands whose type is in S and
which arrived prior to time s cannot exceed the cost of
ordering the types in S. Thus, the intuition is that each
demand of some type i earns budget that pays for its
order Ki. After it has paid for its fixed item ordering
cost, it starts contributing to the joint ordering cost K0.

max
∑

(i,t)∈D

∑

s≥t

y(i, t, s)(2.3)

∀(i, t) ∈ D, s ≥ t : y(i, t, s) ≤ ∆its(2.4)

∀S ⊆ {1, . . . , N}, s ∈ T :∑

(i,t)|t≤s,i∈S

∑

r≥s

y(i, t, r) ≤ C(S)(2.5)

3 The Online algorithm

In this section we present our online algorithm. We
start with intuition. It is instructive to think first about
a much simpler setting with only a single item type.
Suppose that a demand (for this one type) arrives. If no
additional demand arrives in the near future, it is best to
serve this demand right away. However, if an additional
demand arrives soon enough then we would benefit from
delaying the first demand and serving both demands
together. Of course, we do not know which of the two
will happen. Thus, the question is how much delay cost
should we incur before making an order. It can be shown
that the optimal deterministic approach is to wait
until the delay cost incurred exactly equals the order
cost. This approach results in an optimal 2-competitive
algorithm [8]. In our terminology, this corresponds to
an algorithm that waits until the accumulated budgets
of all demands pay for their order. However, it is not
hard to show that such an algorithm will fail in the
more complex JRP problem studied here. Intuitively,
the bad example would force such an algorithm to incur
the ordering cost K0 too often. Suppose we have many
item types, with orders for each at time 0, and their
respective waiting costs increase rapidly close to their
deadlines but the deadlines are equally distributed in
time. Then the previous algorithm would open an order
for each demand separately very close to its deadline and
incur the joint ordering cost K0 for each demand, and
the optimal algorithm will order items in batches and
will not pay K0 as often. Thus, new ideas are needed.

Suppose that a set of types of items S have gathered
an accumulated budget that may pay for the order cost
of the set of types in S. That is, the accumulated
budget is at least the joint ordering cost along with the



additional fixed item order cost of each type in the set
S. We certainly want to make an order to the set of
types in S. However, since this ordering already pays
for the joint ordering cost, we might want to add other
types that still have not fully paid for their fixed cost.
Otherwise, we might need to pay the joint ordering cost
several times while the optimal solution joins all these
demands together and pays the joint ordering cost only
once. On the other hand, it is not wise to add all the
types that have not yet paid for their fixed cost, since
more demands of these types may arrive in the near
future. The question is how many and which ones of
these additional “premature” types should be added to
the current order.

The main novel idea that is used in our algorithm
is the simulation step that uses the current known
information to decide which of the types will be added
to the current joint order. In the simulation step we
virtually increase the algorithmic time to future time
periods assuming that no additional demands arrive.
During this process we increase the delay cost of the
demands that have arrived and are not satisfied yet, and
so additional types manage to “pay” for their order cost.
These types are added to the current order, and their
corresponding demands become “half active” (defined
below). Continuing the simulation for a long time has
the benefit of adding more types to the current order
that already paid for the joint order cost. However, each
additional type that is added prematurely adds to the
current order cost more than its current budget. Since
more demands of that type might arrive in future times,
the “future” budget that convinced us to add it to the
current order is not guaranteed. Therefore, the idea is
to continue with the simulation step as long as the extra
future budget that we use is at most the joint order cost,
K0. This extra budget exactly balances between these
two options.

3.1 Algorithm Description We are now ready to
formally describe our algorithm. Our online algorithm
uses an algorithmic time indicator τ that starts at
time 0 and is increased continuously as time progresses.
At each discrete time s the algorithm simulates a
continuous increase of the time indicator τ from time
s to s + 1. Any orders that are indicated at algorithmic
time τ are actually made at time s = bτc.

Each demand (i, t) may be active, half active or in-
active during the algorithm execution. Each unsatisfied
demand is always active, so each demand is active from
its arrival time until it is satisfied at some algorithmic
time τ . After this time τ the demand (i, t) becomes
either half active or inactive. Half active demands are
demands that were already satisfied, but they still play

some role in our algorithm. Intuitively, these demands
were satisfied ”prematurely” and we want them to pay
for some other costs. When demand is satisfied it may
become half active for a certain time, and then it be-
comes inactive forever. Let τe(i, t) be the time demand
(i, t) becomes half active. Let τf (i, t) be the time de-
mand (i, t) becomes inactive. If τf (i, t) > τe(i, t) then
during the time interval [τe(i, t), τf (i, t)] the demand
(i, t) is half active. When a new demand arrives and
is not served yet, we set τe(i, t) = τf (i, t) = ∞. We
remark again that τe(i, t) and τf (i, t) do not have to be
integral.

Our proposed online algorithm maintains during
each time τ a list of active (unsatisfied) demands Aτ ⊆
D and a set Hτ ⊆ D of half active demands. These sets
contain, of course, only demands that arrived prior to
time τ . At the beginning of the planning horizon A0

consists of demands that arrived at time 0 and H0 = ∅.
If the algorithm changes the status of a set of demands
at time τ then we denote by A−τ and A+

τ the set of active
demands just before and after this change. Similarly, let
H−

τ and H+
τ denote the set of active demands just before

and after the change.
The algorithm maintains the following assignment

to each dual variable y(i, t, s). Until τ becomes s the
variable is zero. If demand (i, t) is active or half active
at time τ ≥ s then the variable is increased continuously
by the linear function y(i, t, s) ← (τ − s)∆its. The
increment stops whenever the demand becomes inactive
or when τ = s + 1, the earlier event. From that point
on the dual variable remains a constant with value
min{(τf (i, t)− s)∆its,∆its}.

Orders are triggered when dual constraints become
tight due to increments of the dual variables. To this
end, we consider at time τ any set S and any time s ≤ τ
and check whether the total sum of the dual variables
that contribute to the suitable dual constraint is exactly
C(S). Demands that contribute to the constraint are
demands whose type is in S and their arrival time is
prior to s. We may consider only times s that are
integral (i.e. s ∈ T), since if the constraint is tight
for non-integral time τ ′ then moving backwards to time
bτ ′c can only increase the total sum. This happens since
in our model no new demands arrive between time bτ ′c
and time τ ′.

When reading the algorithm description note the
similarity between the work of the algorithm during the
simulation step and the work of the algorithm during
the main part. The only difference is that demands that
are being added to the order in the simulation step are
marked as half active and not inactive as in the main
part of the algorithm. The formal description of the
algorithm is the following:



Inventory algorithm: Upon arrival of a demand
(i, t) set τf (i, t) = τe(i, t) = ∞.
At each algorithmic time τ :

Keep the invariant that for any set of types S and
time s ≤ τ :

∑
(i,t)|t≤s,i∈S

∑
r≥s y(i, t, r) ≤ C(S).

If there exist a set of types S and time s such that∑
(i,t)|t≤s,i∈S

∑
r≥s y(i, t, r) = C(S):

1. Set all half active demands that contribute to
the constraint to be inactive.
Formally, if (i, t) ∈ Hτ and also i ∈ S, t ≤ s
then set τf (i, t) = τ .

2. If there are no active demands that contribute
to the tight constraint return to (1). Otherwise:

3. Set all half active demands to be inactive. Note
that we may change status of some demands
that do not contribute to the tight constraint.

4. If s is later than the time of the previous order
made by the algorithm, then set an order to the
all item types in the tight constraint O , S.

5. If s is at most the time of the previous order
made by the algorithm, then set an order to
the set of types of demands that are active and
contribute to the tight constraint. Formally:

O , {i | ∃(i, t) ∈ Aτ such that i ∈ S, t ≤ s}

6. Set all active demands (i, t) whose type i ∈ O
to be inactive.

Simulation step:

• Simulate the execution of the algorithm in fu-
ture times τ(future) > τ . If there are no active
demands left, or the accumulated value of the
dual variables y(i, t, s) from time τ until time
τ(future) is at least K0 then stop the simula-
tion step and return to line (1).

• Otherwise: if there exists a set S′ and time
s(past) such that

∑

(i,t)|t≤s(past),i∈S′

∑

r≥s

y(i, t, r) = C(S′)

1. Add to the order O all types in

O′ ,
{

i

∣∣∣∣
∃(i, t) ∈ A

τ(future)

such that i ∈ S′, t ≤ s(past)

}

2. Set all active demands (i, t) whose type i ∈
O′ to be half active at time τ and inactive
at time τ(future) (τe(i, t) = τ , τf (i, t) =
τ(future)) and continue the simulation.

3.2 Analysis The main idea in the analysis is to
construct a primal solution whose cost is that of the
solution obtained by the online algorithm. Then we
construct a corresponding dual solution based on the
variables used by the online algorithm and prove that
this dual solution is indeed feasible. The main difficulty
is proving that the cost of the primal solution is at most
3 times the value of the dual solution. To prove this
we bound the total delay penalty cost and the total
order cost of the algorithm as a function of the dual
variables. We then sum up all costs and prove that
each dual variable appears in the sum at most 3 times.
We conclude the proof using the standard weak duality
theorem.

The primal solution is defined simply by setting for
each order O made by the online algorithm at time
s = bτc, x(O, s) = 1. Also we set z(i, t, s) = 1 for
any demand (i, t) and time s such that τe(i, t) ≥ s + 1
and otherwise we set z(i, t, s) = 0. Note when a demand
becomes half active it is already served and so we can
set z(i, t, s) = 0 for any s such that τe(i, t) < s + 1.
The dual solution is given by the assignments to the
dual variables y(i, t, s) determined during the execution
of the algorithm. The following Lemma proves that the
dual solution produced this way is feasible.

Lemma 3.1. The assignment y(i, t, s) for each demand
(i, t) and time s that is maintained during the execution
of the algorithm defines a feasible dual assignment to
(2.4)-(2.5).

Proof. First, since each y(i, t, s) ≤ ∆its all constraints
(2.4) are satisfied. Assume to the contrary that the
assignment violates one of the constraints (2.5). Then
there exists a set S and time s such that:

∑

(i,t)|t≤s,i∈S

∑

r≥s

y(i, t, s) > C(S)

Thus, by this (false) assumption there must be a
time τ during the execution of the algorithm for which

∑

(i,t)|t≤s,i∈S

∑

r≥s

y(i, t, s) = C(S).

Also, there must be some demand (i, t) with type i ∈ S
that arrived prior to time s and is active or half active
at time > τ . This follows because the dual constraint
is violated at time > τ . However, by the algorithm
behavior (lines (1),(6)), at the algorithmic time τ all
active and half active demands that contribute to the
constraint become inactive, and so we are done.

In order to prove that the cost of the primal solution
produced by the algorithm is at most 3 times the cost
of the dual solution we need further notations. We



consider the dual constraints that become tight during
the execution of the online algorithm. Note that dual
constraints may become tight either in the main section
of the algorithm or in the simulation step. Some of the
constraints that become tight during the simulation step
may not become tight later during the real execution
of the algorithm. We elaborate on this issue later on.
Let R be any constraint (2.5) in the dual LP that
became tight during the algorithm execution. Such a
constraint is defined by its starting time period τs(R),
its set of types W (R) and the time period τe(R) when
this constraint becomes tight. Note again that we may
assume that τs(R) is integral. However, τe(R) is an
algorithmic time that may be any real number. In our
dual solution only dual variables y(i, t, s) that belong to
active or half active demands have a positive value, i.e.,
variables y(i, t, s) with t ≤ s ≤ τf (i, t). Let D(R) be
the set of demands that contribute to the constraint R.
Formally,

D(R) = {(i, t) | i ∈ W (R), s ≤ τs(R), τf (i, t) > τs(R)}

For each constraint R let W̃ (R) ⊆ W (R) be the set
of types of demands that are active or half active at
the time moment when the constraint R becomes tight.
Formally,

W̃ (R) =
{
i′ | ∃(i, t) ∈ D(R), i′ = i, τf (i, t) ≥ τe(R)

}
.

Finally, let D(W̃ (R)) be the set of demands in D(R)
of types from the set W̃ (R). Formally,

D(W̃ (R)) =
{

(i, t) | (i, t) ∈ D(R), i ∈ W̃ (R)
}

Next, we consider the orders made by the algorithm.
Let τ1 ≤ τ2 ≤ τ3 ≤ . . . be the times in which the
algorithm makes an order. The algorithm makes an
order whenever it encounters a tight constraint that
contains active demands, i.e. D(R) ∩ A−τe(R) 6= ∅. Let
R1, R2, . . . be the tight constraints that caused these
orders. We partition the time interval into phases. A
new phase p starts whenever the starting time of Ri

is later then the ending time of the next constraint
Ri−1 (i.e. τs(Ri) > τe(Ri−1)). The first phase starts
at τs(R1). An example of such a partition appears in
Figure 1 where we view each constraint R as an interval
between τs(R) and τe(R).

We separate the first constraint that started each
phase and other constraints that became tight in the
same phase. Note that each phase contains at least one
tight constraint that triggered the first order. Let Rp,1

be the first constraint that became tight in phase p. Let
Rp be all the other constraint that became tight during
phase p. The set Rp also includes the constraints that
became tight during the simulation step of the algorithm
and possibly did not become tight during the actual
execution of the algorithm due to the beginning of phase
p + 1 (See figure 1). Let τs(p) = τs(Rp,1) be the start
of a phase p that is equal to the starting time of the
first constraint that became tight during that phase.
Let τe(p) = τe(Rp,1) be the time in which Rp,1 became
tight. Finally, let τf (p) be the ending time period of
the phase p that is the time period in which the last
constraint that caused an order in the phase p to become
tight. This definition induces the following partition of
the time interval τs(p) ≤ τe(p) ≤ τf (p) < τs(p + 1) ≤
τe(p + 1) ≤ . . ..

We next want to bound the total cost of the online
algorithm using the value of the dual solution. We start
with some intuition that will make the technical lemmas
and the algorithm behavior more clear. We show in
Lemma 3.3 that the delay cost incurred by the online
algorithm is at most the value of the dual solution.
Bounding the order cost is harder. The proof reveals
the ideas behind the simulation step and the partition
into phases. The first constraint in each phase is tight
and thus the total “budget” inside it is enough to pay
for both the joint order cost of the first order in the
phase and the fixed order cost of all types ordered in
this first order (excluding the types that are added in
the simulation step). The main observation is that if
the phase did not end after the first order, then all the
constraints that become tight during the simulation step
also become tight during the actual execution of the
algorithm and with the same order. We formalize this
in the following lemma:

Lemma 3.2. For each phase p, the constraints that
become tight in the interval (τe(p), τf (p)] are exactly the
same constraints that became tight during the simulation
step done by the algorithm.

Proof. All the tight constraints that become tight dur-
ing this time interval have a starting time earlier than
the ending time of the previous order; otherwise, a new
phase starts by definition. Therefore, only demands
that arrived prior to the previous order (in the phase
p) may contribute to these constraints. Since the sim-
ulation step simulates exactly the events that involve
demands that already arrived, the constraints that be-
came tight are exactly the constraints that became tight
during the simulation step, and they become tight in the
same order as in the simulation step.

In particular, note that the constraint that became
tight and caused the second order in the phase is



Phase p Phase p+1

Tight constraints that contained active demands

Phase p Phase p+1

Ts(p) Te(p) Tf(p) Ts(p+1)

Rp

Rp,1

(a) (b)

Figure 1: Phase division (a) and the constraint Rp,1 and Rp The dashed constraints are constraints that became
tight during the simulation step and did not cause an order when they became tight.

constraint that became tight after accumulating of value
of at least K0 in the dual. This is true for each successive
order as long as the current phase did not end. The
value accumulated this way is enough to pay the joint
ordering cost of each of the orders from the second to
the last. Finally, we need to pay the fixed cost of the
the types that were ordered during the second to the
last order in the phase and also for the types that were
added due to the simulation step in the first order. We
want to sum the dual profit only until the last order
of the phase in order to bound the number of times
we use each dual variable. We prove that each type
that was added due to a constraint that actually became
tight before the last order of the phase can pay for its
fixed ordering cost. The only problem is with types
that were added in the last order of the phase due to
the simulation step. These types are using future tight
constraints. Since the phase ended, this future budget
cannot be used since it might never become available.
However, by the behavior of the algorithm during the
simulation step the total future budget that is used is
bounded by at most K0. Therefore, we may charge this
extra cost to the budget of the first tight constraint in
the phase.

Lemma 3.3. The total delay cost of the online algo-
rithm is at most:

∑

(i,t)∈D

s<τe(i,t)∑
s=t

y(i, t, s)(3.6)

Proof. By the construction of the primal and dual
solutions, each time the algorithm defines z(i, t, s) = 1
of an active demand (i, t), then also y(i, t, s) = ∆its.
Note that in this case s + 1 ≤ τe(i, t).

The following more involved lemma bounds the
total order costs made by the online algorithm.

Lemma 3.4. The total order cost of the online algo-
rithm is at most:

∑

p∈P


2 ·

s<τe(p)∑

s=τs(p)

∑

(i,t)∈D(W (Rp,1))

y(i, t, s)(3.7)

+

s<τf (p)∑

s=τe(p)

∑

(i,t)∈D
y(i, t, s)

+
∑

R∈Rp

∑

(i,t)∈D(W̃ (R))

s<min{τe(R),τf (p)}∑

s=τs(R)

y(i, t, s)




Proof. For every order of the set S of types, we pay
K0 +

∑
i∈S Ki. We prove that for each phase p, the

total sum of terms that correspond to phase p is at least
the total order cost of the algorithm during that phase.
As previously observed, the accumulated value of the
dual variables between each two orders after the first
order in a phase is at least K0. Thus, the sum of all
dual variables from the time of the first order of a phase
until the time of the last order in a phase fully pays for
all joint order costs from the second to the last order of
the phase. Formally, if there are M orders during the
phase then:

∑s<τf (p)

s=τe(p)

∑
(i,t)∈D y(i, t, s) ≥ (M − 1)K0.

The second observation is that since the first con-
straint in each phase p is tight then

s<τe(p)∑

s=τs(p)

∑

(i,t)∈D(W (Rp,1))

y(i, t, s) = K0 +
∑

i∈W (Rp,1)

Ki(3.8)

Up to now, we charged to the dual variables all
joint ordering costs during the phase and also the fixed
ordering cost of types that were ordered during the first
order of phase p, excluding the types that were added
to the first order due to the simulation step. We are
left with the fixed ordering cost of all types that were
ordered from the second to last order of phase p and the
types that were added to the first order in the phase due
to the simulation step. We claim that for each constraint



R ∈ Rp that became tight in the actual execution of the
algorithm or in the simulation step:

∑

(i,t)∈D(W̃ (R))

s<τe(R)∑

s=τs(R)

y(i, t, s) ≥
∑

i∈W̃ (R)

Ki.(3.9)

The inequality (3.9) means that the dual variables
corresponding to active demands of the inequality R
are enough to pay for item ordering costs. Assume that
this is not true. Then there exists some tight constraint
R ∈ Rp such that

∑

(i,t)∈D(W̃ (R))

s<τe(R)∑

s=τs(R)

y(i, t, s) <
∑

i∈W̃ (R)

Ki

However, since constraint R became tight we get
that

∑
(i,t)∈D(R)

∑s<τe(R)
s=τs(R) y(i, t, s) = K0+

∑
i∈W (R) Ki.

Since D(W̃ (R)) contains all the demands of type W̃ (R)
that contribute positive value to the demand R we get
by subtracting the two equations that:

∑

(i,t) |i∈(W (R)\W̃ (R)),t≤τs(R)

s<τe(R)∑

s=τs(R)

y(i, t, s)

=
∑

(i,t)∈D(R),(i,t)/∈D(W̃ (R))

s<τe(R)∑

s=τs(R)

y(i, t, s)

> K0 +
∑

i∈(W (R)\W̃ (R))

Ki

This contradicts the fact that the online algorithm
holds at each time a feasible dual solution since the
dual constraint that is suitable to the set of types
W (R) \ W̃ (R) and the time t = τs(R) is violated. The
online algorithm also maintains a feasible dual solution
during the simulation step, so this holds also in the
simulation step.

All constraints that became tight during the simu-
lation steps made before the last order in the phase also
became tight in the actual running of the algorithm and
therefore are able to pay for their item ordering cost by
the corresponding dual variables. The only problem is
with constraints that became tight during the simula-
tion step made in the last order of a phase. We can
only make use of the values of the dual variables until
the time of the last order. The main observation is that
by the algorithm’s behavior the extra budget that is
used is at most K0. Thus, if there are M orders during
the phase we obtain

Order cost ≤
∑

(i,t)∈D(W (Rp,1))

s<τe(p)∑

s=τs(p)

y(i, t, s) + (M − 1)K0

+
∑

R∈Rp

∑

(i,t)∈D(W̃ (R))

s<min{τe(R),τf (p)}∑

s=τs(R)

y(i, t, s) + K0(3.10)

≤ 2

s<τe(p)∑

s=τs(p)

∑

(i,t)∈D(W (Rp,1))

y(i, t, s) +

s<τf (p)∑

s=τe(p)

∑

(i,t)∈D
y(i, t, s)

+
∑

R∈Rp

∑

(i,t)∈D(W̃ (R))

s<min{τe(R),τf (p)}∑

s=τs(R)

y(i, t, s)(3.11)

The first term in inequality (3.10) bounds the joint
ordering cost K0 of the first order in the phase and
the fixed ordering cost of each of the types in the first
constraint that became tight. The second term in (3.10)
is the joint ordering cost of all orders from the second
to the last. The third term is the fixed ordering cost
of all types that were ordered in the first order due to
the simulation step and the fixed costs of types ordered
in the second to last order of the phase. Note that
we sum only until the minimum between the time each
constraint became tight and the last order in the phase.
Thus, we add an extra cost of K0 of the extra future
budget that was used. Inequality (3.11) follows directly
from equation (3.8).

We next prove a useful claim that helps us proving
our final result. An order of an item with type i
at time s by our algorithm is always caused by some
dual constraint R becoming tight. One option is that
constraint R became tight at time s ≤ τ < s + 1
and contained an active demand of type i. Another
option is that during the simulation step done at the
algorithmic time τ some constraint R became tight at
time τe(R) > s and caused an order at time s. In the
next Lemma we take two successive times t1 and t2 in
which the algorithm makes an order to an arbitrary type
i. We prove that the starting time τs(R) of the second
constraint that caused an order of type i must be larger
than t1. Intuitively, this means that an order to type i
“resets” all the constraints that contain type i.

Lemma 3.5. Let t1, t2 be two successive times in which
the online algorithm makes an order for some type i. Let
τs(R2) be the beginning time of the second constraint
that became tight (during the real time or during the
simulation) and caused an order of type i at time t2 ≤
τe(R2). Then τs(R2) > t1

Proof. The second constraint became tight in real time
or during the simulation at time τe(R2) ≥ t2. This
constraint must contain at time t2 an active demand
(i, t) with type i (otherwise, it doesn’t cause an order



of type i). In addition, by the properties of the dual
constraints the constraint only contains variables of
demands that arrived prior to τs(R2). Thus, demand
(i, t) is active from time τs(R2) until time t2. At time
t1 ≤ t2 there was an order of type i, and so the algorithm
changed the status of all the demands of type i that
arrived prior to t1 to either half active or inactive. Thus,
it is not possible that τs(R2) ≤ t1.

The next lemma bounds the number of times each
dual variable is used in Equation (3.7). This will allow
us to bound the competitive ratio of the algorithm. Due
to space constraints we defer the proof to the full version
of the paper.

Lemma 3.6. The total number of times each y(i, t, s)
appears in Equation 3.7 at most twice if s < τe(i, t) and
at most 3 times if s ≥ τe(i, t).

Combining Lemmas 3.3, 3.4 and 3.5 we obtain

Theorem 3.1. The algorithm is 3-competitive.

4 Lower Bounds

Known lower bound techniques for the TCP acknowl-
edgement problem do not extend readily to JRP and
thus we required new ideas. In the full version of the
paper we prove the following lower bounds.

Theorem 4.1. No deterministic online algorithm for
the single-item case has competitive ratio less than 2.

Theorem 4.2. No deterministic online algorithm for
the 2-item case has competitive ratio less than 2.46.

Theorem 4.3. No deterministic online algorithm for
the 3-item case has competitive ratio less than 2.64.

Acknowledgements: We thank Andreas Wächter for
his great help in using his non-linear programming
solver IPOPT [17] and Grzegorz Swirszcz for finding
several errors in the exposition of the lower bound.

References

[1] N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder, and
J. Naor. The online set cover problem. In Proceedings
of the 35th annual ACM Symposium on the Theory of
Computation, pages 100–105, 2003.

[2] E. Arkin, D. Joneja, and R. Roundy. Computational
complexity of uncapacitated multi-echelon production
planning problems. Operations Research Letters, 8:61–
66, 1989.

[3] Y. Askoy and S. S. Erenguk. Multi-item inventory
models with coordinated replenishment: a survey.
International Journal of Operations and Production
Management, 8:63–73, 1988.

[4] Niv Buchbinder, Kamal Jain, and Joseph (Seffi) Naor.
Online primal-dual algorithms for maximizing ad-
auctions revenue. In 15th Annual European Symposium
on Algorithms (ESA 2007), 2007.

[5] Niv Buchbinder and Joseph (Seffi) Naor. Online
primal-dual algorithms for covering and packing prob-
lems. In 13th Annual European Symposium on Algo-
rithms - ESA 2005, 2005.

[6] Niv Buchbinder and Joseph (Seffi) Naor. Improved
Bounds for Online Routing and Packing Via a Primal-
Dual Approach. In 47th annual ieee Symposium on
Foundations of Computer Science (FOCS 2006), 2006.

[7] N. P. Dellaert1 and M. T. Melo. Heuristic proce-
dures for a stochastic lot-sizing problem in make-to-
order manufacturing. Annals of Operations Research,
59(1):227–258, 2005.

[8] Daniel R. Dooly, Sally A. Goldman, and Stephen D.
Scott. Tcp dynamic acknowledgment delay (extended
abstract): theory and practice. In STOC ’98: Proceed-
ings of the thirtieth annual ACM symposium on Theory
of computing, pages 389–398, 1998.

[9] M. X. Goemans and D. P. Williamson. A general ap-
proximation technique for constrained forest problems.
SIAM Journal on Computing, 24:296–317, 1995.

[10] Qi-Ming He, E.M. Jewkes, and J. Buzacott. The value
of information used in inventory control of a make-to-
order inventory-production system. IIE Transactions,
34(11):999–1013, 2002.

[11] S. Van Hoesel and A. Wagelmans. A dual algorithm
for the economic lot-sizing problem. European Journal
of Operatioms Research, 52:315–325, 1991.

[12] K. Jain and V. V. Vazirani. Approximation algorithms
for metric facility location and k-median problems us-
ing the primal-dual schema and Lagrangian relaxation.
Journal of the ACM 48, pages 274–296, 2001.

[13] Anna R. Karlin, Claire Kenyon, and Dana Randall.
Dynamic TCP acknowledgement and other stories
about e/(e-1). In ACM Symposium on Theory of Com-
puting, pages 502–509, 2001.

[14] Wei-Min Lan and Tava Lennon Olsen. Multiproduct
systems with both setup times and costs: Fluid bounds
and schedules. Operations Research, 54(3):505–522,
2006.

[15] R. Levi, R. O. Roundy, and D. B. Shmoys. Primal-dual
algorithms for deterministic inventory problems. Math-
ematics of Operations Research, 31:267–284, 2006.

[16] R. Levi, R. O. Roundy, D. B. Shmoys, and M. Sviri-
denko. First constant approximation algorithm for the
single-warehouse multi-retailer problem. To appear in
Management Science, extended abstracts appeared in
SODA 2005 and APPROX 2006., 2004.

[17] A. Wächter and L. T. Biegler. On the implementa-
tion of an interior-point filter line-search algorithm for
large-scale nonlinear programming. Mathematical Pro-
gramming, 106(1):25–57, 2006.

[18] H. M. Wagner and T. M. Whitin. Dynamic version of
the economic lot sizing model. Management Science,
5:89–96, 1958.


