
Metric Extension Operators, Vertex Sparsifiers and

Lipschitz Extendability

Konstantin Makarychev
IBM T.J. Watson Research Center

Yury Makarychev
Toyota Technological Institute at Chicago

Abstract

We study vertex cut and flow sparsifiers that were recently introduced by Moitra (2009),
and Leighton and Moitra (2010). We improve and generalize their results. We give a new
polynomial-time algorithm for constructing O(log k/ log log k) cut and flow sparsifiers, matching
the best known existential upper bound on the quality of a sparsifier, and improving the previous
algorithmic upper bound of O(log2 k/ log log k). We show that flow sparsifiers can be obtained
from linear operators approximating minimum metric extensions. We introduce the notion of
(linear) metric extension operators, prove that they exist, and give an exact polynomial-time
algorithm for finding optimal operators.

We then establish a direct connection between flow and cut sparsifiers and Lipschitz extend-
ability of maps in Banach spaces, a notion studied in functional analysis since 1930s. Using
this connection, we obtain a lower bound of Ω(

√
log k/ log log k) for flow sparsifiers and a lower

bound of Ω(
√

log k/ log log k) for cut sparsifiers. We show that if a certain open question posed
by Ball in 1992 has a positive answer, then there exist Õ(

√
log k) cut sparsifiers. On the other

hand, any lower bound on cut sparsifiers better than Ω̃(
√

log k) would imply a negative answer
to this question.

1 Introduction

In this paper, we study vertex cut and flow sparsifiers that were recently introduced by Moitra
(2009), and Leighton and Moitra (2010). A weighted graph H = (U, β) is a Q-quality vertex cut
sparsifier of a weighted graph G = (V, α) (here αij and βpq are sets of weights on edges of G and
H) if U ⊂ V and the size of every cut (S,U \ S) in H approximates the size of the minimum
cut separating sets S and U \ S in G within a factor of Q. Moitra (2009) presented several
important applications of cut sparsifiers to the theory of approximation algorithms. Consider a
simple example. Suppose we want to find the minimum cut in a graph G = (V, α) that splits a
given subset of vertices (terminals) U ⊂ V into two approximately equal parts. We construct Q-
quality sparsifier H = (U, β) of G, and then find a balanced cut (S,U \S) in H using the algorithm
of Arora, Rao, and Vazirani (2004). The desired cut is the minimum cut in G separating sets S
and U \ S. The approximation ratio we get is O(Q ×

√
log |U |): we lose a factor of Q by using

cut sparsifiers, and another factor of O(
√

log |U |) by using the approximation algorithm for the
balanced cut problem. If we applied the approximation algorithm for the balanced, or, perhaps,
the sparsest cut problem directly we would lose a factor of O(

√
log |V |). This factor depends on

the number of vertices in the graph G, which may be much larger than the number of vertices
in the graph H. Note, that we gave the example above just to illustrate the method. A detailed
overview of applications of cut and flow sparsifiers is presented in the papers of Moitra (2009)
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and Leighton and Moitra (2010). However, even this simple example shows that we would like
to construct sparsifiers with Q as small as possible. Moitra (2009) proved that for every graph
G = (V, α) and every k-vertex subset U ⊂ V , there exists a O(log k/ log log k)-quality sparsifier
H = (U, β). However, the best known polynomial-time algorithm proposed by Leighton and Moitra
(2010) finds only O(log2 k/ log log k)-quality sparsifiers. In this paper, we close this gap: we give
a polynomial-time algorithm for constructing O(log k/ log log k)-cut sparsifiers matching the best
known existential upper bound. In fact, our algorithm constructs O(log k/ log log k)-flow sparsifiers.
This type of sparsifiers was introduced by Leighton and Moitra (2010); and it generalizes the
notion of cut-sparsifiers. Our bound matches the existential upper bound of Leighton and Moitra
(2010) and improves their algorithmic upper bound of O(log2 k/ log log k). If G is a graph with an
excluded minor Kr,r, then our algorithm finds a O(r2)-quality flow sparsifier, again matching the
best existential upper bound of Leighton and Moitra (2010) (Their algorithmic upper bound has
an additional log k factor). Similarly, we get O(log g)-quality flow sparsifiers for genus g graphs1.

In the second part of the paper (Section 5), we establish a direct connection between flow and cut
sparsifiers and Lipschitz extendability of maps in Banach spaces. Let Qcutk (respectively, Qmetrick ) be
the minimum over all Q such that there exists a Q-quality cut (respectively, flow) sparsifier for every
graph G = (V, α) and every subset U ⊂ V of size k. We show that Qcutk = ek(`1, `1) and Qmetrick =
ek(∞, `∞ ⊕1 · · · ⊕1 `∞), where ek(`1, `1) and ek(∞, `∞ ⊕1 · · · ⊕1 `∞) are the Lipschitz extendability
constants (see Section 5 for the definitions). That is, there always exist cut and flow sparsifiers of
quality ek(`1, `1) and ek(∞, `∞ ⊕1 · · · ⊕1 `∞), respectively; and these bounds cannot be improved.
We then prove lower bounds on Lipschitz extendability constants and obtain a lower bound of
Ω(
√

log k/ log log k) on the quality of flow sparsifiers and a lower bound of Ω( 4
√

log k/ log log k) on
the quality of cut sparsifiers (improving upon previously known lower bound of Ω(log log k) and
Ω(1) respectively). To this end, we employ the connection between Lipschitz extendability constants
and relative projection constants that was discovered by Johnson and Lindenstrauss (1984). Our
bound on ek(∞, `∞ ⊕1 · · · ⊕1 `∞) immediately follows from the bound of Grünbaum (1960) on the
projection constant λ(`d1, `∞). To get the bound of Ω( 4

√
log k/ log log k) on ek(`1, `1), we prove a

lower bound on the projection constant λ(L, `1) for a carefully chosen subspace L of `1. After a
preliminary version of our paper appeared as a preprint, Johnson and Schechtman notified us that
a lower bound of Ω(

√
log k/ log log k) on ek(`1, `1) follows from their joint work with Figiel (Figiel,

Johnson, and Schechtman 1988). With their permission, we present the proof of the lower bound
in Section D of the Appendix, which gives a lower bound of Ω(

√
log k/ log log k) on the quality of

cut sparsifiers.
In Section 5.3, we note that we can use the connection between vertex sparsifiers and extend-

ability constants not only to prove lower bounds, but also to get positive results. We show that
surprisingly if a certain open question in functional analysis posed by Ball (1992) has a positive an-
swer, then there exist Õ(

√
log k)-quality cut sparsifiers. This is both an indication that the current

upper bound of O(log k/ log log k) might not be optimal and that improving lower bounds beyond
of Õ(

√
log k) will require solving a long standing open problem (negatively).

Finally, in Section 6, we show that there exist simple “combinatorial certificates” that certify
that Qcutk ≥ Q and Qmetrick ≥ Q.

1Independently and concurrently to our work, Charikar, Leighton, Li, and Moitra (2010), and independently
Englert, Gupta, Krauthgamer, Räcke, Talgam-Cohen and Talwar (2010) obtained results similar to some of our
results.
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Overview of the Algorithm. The main technical ingredient of our algorithm is a procedure
for finding linear approximations to metric extensions. Consider a set of points X and a k-point
subset Y ⊂ X. Let DX be the cone of all metrics on X, and DY be the cone of all metrics on Y .
For a given set of weights αij on pairs (i, j) ∈ X ×X, the minimum extension of a metric dY from
Y to X is a metric dX on X that coincides with dY on Y and minimizes the linear functional

α(dX) ≡
∑
i,j∈X

αijdX(i, j).

We denote the minimum above by min-extY→X(dY , α). We show that the map between dY and
its minimum extension, the metric dX , can be well approximated by a linear operator. Namely,
for every set of nonnegative weights αij on pairs (i, j) ∈ X × X, there exists a linear operator
φ : DY → DX of the form

φ(dY )(i, j) =
∑
p,q∈Y

φipjqdY (p, q) (1)

that maps every metric dY to an extension of the metric dY to the set X such that

α(φ(dY )) ≤ O
(

log k

log log k

)
min-ext
Y→X

(dY , α).

As a corollary, the linear functional β : DX → R defined as β(dY ) =
∑

i,j∈X αijφ(dY )(i, j) approxi-
mates the minimum extension of dY up to O(log k/ log log k) factor. We then give a polynomial-time
algorithm for finding φ and β. (The algorithm finds the optimal φ.) To see the connection with
cut and flow sparsifiers write the linear operator β(dY ) as β(dY ) =

∑
p,q∈Y βpqdY (p, q), then

min-ext
Y→X

(dY , α) ≤
∑
p,q∈Y

βpqdY (p, q) ≤ O
(

log k

log log k

)
min-ext
Y→X

(dY , α). (2)

Note that the minimum extension of a cut metric is a cut metric (since the mincut LP is integral).
Now, if dY is a cut metric on Y corresponding to the cut (S, Y \ S), then

∑
p,q∈Y βpqdY (p, q) is

the size of the cut in Y with respect to the weights βpq; and min-extY→X(dY , α) is the size of the
minimum cut in X separating S and Y \S. Thus, (Y, β) is a O(log k/ log log k)-quality cut sparsifier
for (X,α).

Definition 1.1 (Cut sparsifier (Moitra 2009)). Let G = (V, α) be a weighted undirected graph
with weights αij; and let U ⊂ V be a subset of vertices. We say that a weighted undirected graph
H = (U, β) on U is a Q-quality cut sparsifier, if for every S ⊂ U , the size the cut (S,U \ S) in H
approximates the size of the minimum cut separating S and U \ S in G within a factor of Q i.e.,

min
T⊂V :S=T∩U

∑
i∈T

j∈V \T

αij ≤
∑
p∈S
q∈U\S

βpq ≤ Q× min
T⊂V :S=T∩U

∑
i∈T

j∈V \T

αij .

2 Preliminaries

In this section, we remind the reader some basic definitions.
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2.1 Multi-commodity Flows and Flow-Sparsifiers

Definition 2.1. Let G = (V, α) be a weighted graph with nonnegative capacities αij between vertices
i, j ∈ V , and let {(sr, tr,demr)} be a set of flow demands (sr, tr ∈ V are terminals of the graph,
demr ∈ R are demands between sr and tr; all demands are nonnegative). We say that a weighted
collection of paths P with nonnegative weights wp (p ∈ P) is a fractional multi-commodity flow
concurrently satisfying a λ fraction of all demands, if the following two conditions hold.

• Capacity constraints. For every pair (i, j) ∈ V × V ,∑
p∈P:(i,j)∈p

wp ≤ αij . (3)

• Demand constraints. For every demand (sr, tr,demr),∑
p∈P:p goes from sr to tr

wp ≥ λ demr . (4)

We denote the maximum fraction of all satisfied demands by max-flow(G, {(sr, tr,demr)}).

For a detailed overview of multi-commodity flows, we refer the reader to the book of Schrijver
(2003).

Definition 2.2 (Leighton and Moitra (2010)). Let G = (V, α) be a weighted graph and let U ⊂ V
be a subset of vertices. We say that a graph H = (U, β) on U is a Q-quality flow sparsifier of G if
for every set of demands {(sr, tr,demr)} between terminals in U ,

max-flow(G, {(sr, tr, demr)}) ≤ max-flow(H, {(sr, tr, demr)}) ≤ Q×max-flow(G, {(sr, tr,demr)}).

Leighton and Moitra (2010) showed that every flow sparsifier is a cut sparsifier.

Theorem 2.3 (Leighton and Moitra (2010)). If H = (U, β) is a Q-quality flow sparsifier for
G = (V, α), then H = (U, β) is also a Q-quality cut sparsifier for G = (V, α).

2.2 Metric Spaces and Metric Extensions

Recall that a function dX : X×X → R is a metric if for all i, j, k ∈ X the following three conditions
hold dX(i, j) ≥ 0, dX(i, j) = dX(j, i), dX(i, j)+dX(j, k) ≥ dX(i, k). Usually, the definition of metric
requires that dX(i, j) 6= 0 for distinct i and j but we drop this requirement for convenience (such
metrics are often called semimetrics). We denote the set of all metrics on a set X by DX . Note,
that DX is a convex closed cone. Moreover, DX is defined by polynomially many (in |X|) linear
constraints (namely, by the three inequalities above for all i, j, k ∈ X).

A map f from a metric space (X, dX) to a metric space (Z, dZ) is C-Lipschitz, if dZ(f(i), f(j)) ≤
CdX(i, j) for all i, j ∈ X. The Lipschitz norm of a Lipschitz map f equals

‖f‖Lip = sup

{
dZ(f(i), f(j))

dX(i, j)
: i, j ∈ X; dX(i, j) > 0

}
.
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Definition 2.4 (Metric extension and metric restriction). Let X be an arbitrary set, Y ⊂ X, and
dY be a metric on Y . We say that dX is a metric extension of dY to X if dX(p, q) = dY (p, q) for
all p, q ∈ Y . If dX is an extension of dY , then dY is the restriction of dX to Y . We denote the
restriction of dX to Y by dX |Y (clearly, dX |Y is uniquely defined by dX).

Definition 2.5 (Minimum extension). Let X be an arbitrary set, Y ⊂ X, and dY be a metric on
Y . The minimum (cost) extension of dY to X with respect to a set of nonnegative weights αij on
pairs (i, j) ∈ X ×X is a metric extension dX of dY that minimizes the linear functional α(dX):

α(dX) ≡
∑
i,j∈X

αijdX(i, j).

We denote α(dX) by min-extY→X(dY , α).

Lemma 2.6. Let X be an arbitrary set, Y ⊂ X, and αij be a set of nonnegative weights on pairs
(i, j) ∈ X ×X. Then the function min-extY→X(dY , α) is a convex function of the first variable.

Proof. Consider arbitrary metrics d∗Y and d∗∗Y in DY . Let d∗X and d∗∗X be their minimal extensions
to X. For every λ ∈ [0, 1], the metric λd∗X + (1 − λ)d∗∗X is an extension (but not necessarily the
minimum extension) of λd∗Y + (1− λ)d∗∗Y to X,

min-ext
Y→X

(λd∗Y + (1− λ)d∗∗Y , α) ≤
∑
i,j∈X

αij((λd
∗
X(i, j) + (1− λ)d∗∗X (i, j))) =

λ
∑
i,j∈X

αijd
∗
X(i, j) + (1− λ)

∑
i,j∈X

αijd
∗∗
X (i, j) = λmin-ext

Y→X
(d∗Y , α) + (1− λ) min-ext

Y→X
(d∗∗Y , α).

Later, we shall need the following theorem of Fakcharoenphol, Harrelson, Rao, and Talwar
(2003).

Theorem 2.7 (FHRT 0-extension Theorem). Let X be a set of points, Y be a k-point subset of
X, and dY ∈ DY be a metric on Y . Then for every set of nonnegative weights αij on X ×X, there
exists a map (0-extension) f : X → Y such that f(p) = p for every p ∈ Y and∑

i,j∈X
αij · dY (f(i), f(j)) ≤ O(log k/ log log k)×min-ext

Y→X
(dY , α).

The notion of 0-extension was introduced by Karzanov (1998). A slightly weaker version of
this theorem (with a guarantee of O(log k)) was proved earlier by Calinescu, Karloff, and Rabani
(2001).

3 Metric Extension Operators

In this section, we introduce the definitions of “metric extension operators” and “metric vertex
sparsifiers” and then establish a connection between them and flow sparsifiers. Specifically, we
show that each Q-quality metric sparsifier is a Q-quality flow sparsifier and vice versa (Lemma 3.5,
Lemma A.1). In the next section, we prove that there exist metric extension operators with
distortion O(log k/ log log k) and give an algorithm that finds the optimal extension operator.
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Definition 3.1 (Metric extension operator). Let X be a set of points, and Y be a k-point subset
of X. We say that a linear operator φ : DY → DX defined as

φ(dY )(i, j) =
∑
p,q∈Y

φipjqdY (p, q)

is a Q-distortion metric extension operator with respect to a set of nonnegative weights αij, if

• for every metric dY ∈ DY , metric φ(dY ) is a metric extension of dY ;

• for every metric dY ∈ DY ,

α(φ(dY )) ≡
∑
i,j∈X

αijφ(dY )(i, j) ≤ Q×min-ext
Y→X

(dY , α).

Remark: As we show in Lemma 3.3, a stronger bound always holds:

min-ext
Y→X

(dY , α) ≤α(φ(dY )) ≤ Q×min-ext
Y→X

(dY , α).

• for all i, j ∈ X, and p, q ∈ Y ,
φipjq ≥ 0.

We shall always identify the operator φ with its matrix φipjq.

Definition 3.2 (Metric vertex sparsifier). Let X be a set of points, and Y be a k-point subset of
X. We say that a linear functional β : DY → R defined as

β(dY ) =
∑
p,q∈Y

βpqdY (p, q)

is a Q-quality metric vertex sparsifier with respect to a set of nonnegative weights αij, if for every
metric dY ∈ DY ,

min-ext
Y→X

(dY , α) ≤ β(dY ) ≤ Q×min-ext
Y→X

(dY , α);

and all coefficients βpq are nonnegative.

The definition of the metric vertex sparsifier is equivalent to the definition of the flow vertex
sparsifier. We prove this fact in Lemma 3.5 and Lemma A.1 using duality. However, we shall use
the term “metric vertex sparsifier”, because the new definition is more convenient for us. Also, the
notion of metric sparsifiers makes sense when we restrict dX and dY to be in special families of
metrics. For example, (`1, `1) metric sparsifiers are equivalent to cut sparsifiers.

Remark 3.1. The constraints that all φipjq and βpq are nonnegative though may seem unnatural
are required for applications. We note that there exist linear operators φ : DY → DX and linear
functionals β : DY → R that satisfy all constraints above except for the non-negativity constraints.
However, even if we drop the non-negativity constraints, then there will always exist an optimal met-
ric sparsifier with nonnegative constraints (the optimal metric sparsifier is not necessarily unique).
Surprisingly, the same is not true for metric extension operators: if we drop the non-negativity
constraints, then, in certain cases, the optimal metric extension operator will necessarily have some
negative coefficients. This remark is not essential for the further exposition, and we omit the proof
here.
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Lemma 3.3. Let X be a set of points, Y ⊂ X, and αij be a nonnegative set of weights on pairs
(i, j) ∈ X ×X. Suppose that φ : DY → DX is a Q-distortion metric extension operator. Then

min-ext
Y→X

(dY , α) ≤ α(φ(dY )).

Proof. The lower bound
min-ext
Y→X

(dY , α) ≤ α(dX)

holds for every extension dX (just by the definition of the minimum metric extension), and partic-
ularly for dX = φ(dY ).

We now show that given an extension operator with distortion Q, it is easy to obtain Q-quality
metric sparsifier.

Lemma 3.4. Let X be a set of points, Y ⊂ X, and αij be a nonnegative set of weights on pairs
(i, j) ∈ X×X. Suppose that φ : DY → DX is a Q-distortion metric extension operator. Then there
exists a Q-quality metric sparsifier β : DY → R. Moreover, given the operator φ, the sparsifier β
can be found in polynomial-time.

Remark 3.2. Note, that the converse statement does not hold. There exist sets X, Y ⊂ X and
weights α such that the distortion of the best metric extension operator is strictly larger than the
quality of the best metric vertex sparsifier.

Proof. Let β(dY ) =
∑

i,j∈X αijφ(dY )(i, j). Then by the definition of Q-distortion extension opera-
tor, and by Lemma 3.3,

min-ext
Y→X

(dY , α) ≤ β(dY ) ≡ α(φ(dY )) ≤ Q×min-ext
Y→X

(dY , α).

If φ is given in the form (1), then

βpq =
∑
i,j∈X

αijφipjq.

We now prove that every Q-quality metric sparsifier is a Q-quality flow sparsifier. We prove
that every Q-quality flow sparsifier is a Q-quality metric sparsifier in the Appendix.

Lemma 3.5. Let G = (V, α) be a weighted graph and let U ⊂ V be a subset of vertices. Suppose,
that a linear functional β : DU → R, defined as

β(dU ) =
∑
p,q∈U

βpqdU (p, q)

is a Q-quality metric sparsifier. Then the graph H = (U, β) is a Q-quality flow sparsifier of G.

Proof. Fix a set of demands {(sr, tr,demr)}. We need to show, that

max-flow(G, {(sr, tr, demr)}) ≤ max-flow(H, {(sr, tr, demr)}) ≤ Q×max-flow(G, {(sr, tr,demr)}).

The fraction of concurrently satisfied demands by the maximum multi-commodity flow in G
equals the maximum of the following standard linear program (LP) for the problem: the LP has a
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variable wp for every path between terminals that equals the weight of the path (or, in other words,
the amount of flow routed along the path) and a variable λ that equals the fraction of satisfied
demands. The objective is to maximize λ. The constraints are the capacity constraints (3) and
demand constraints (4). The maximum of the LP equals the minimum of the (standard) dual LP
(in other words, it equals the value of the fractional sparsest cut with non-uniform demands).

minimize: ∑
i,j∈V

αijdV (i, j)

subject to: ∑
r

dV (sr, tr)× demr ≥ 1

dV ∈ DV i.e., dV is a metric on V

The variables of the dual LP are dV (i, j), where i, j ∈ V . Similarly, the maximum concurrent
flow in H equals the minimum of the following dual LP.

minimize: ∑
p,q∈U

βpqdU (p, q)

subject to: ∑
r

dU (sr, tr)× demr ≥ 1

dU ∈ DU i.e., dU is a metric on U

Consider the optimal solution d∗U of the dual LP for H. Let d∗V be the minimum extension of
d∗U . Since d∗V is a metric, and d∗V (sr, tr) = d∗U (sr, tr) for each r, d∗V is a feasible solution of the the
dual LP for G. By the definition of the metric sparsifier:

β(d∗U ) ≡
∑
p,q∈U

βpqd
∗
U (p, q) ≥ min-ext

Y→X
(d∗U , α) ≡

∑
i,j∈V

αijd
∗
V (i, j).

Hence,
max-flow(H, {(sr, tr, demr)}) ≥ max-flow(G, {(sr, tr, demr)}).

Now, consider the optimal solution d∗V of the dual LP for G. Let d∗U be the restriction of d∗V (p, q)
to the set U . Since d∗U is a metric, and d∗U (sr, tr) = d∗V (sr, tr) for each r, d∗U is a feasible solution
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of the the dual LP for H. By the definition of the metric sparsifier (keep in mind that d∗V is an
extension of d∗U ),

β(d∗U ) ≡
∑
p,q∈U

βpqd
∗
U (p, q) ≤ Q×min-ext

Y→X
(d∗U , α) ≤ Q×

∑
i,j∈V

αijd
∗
V (i, j).

Hence,
max-flow(H, {(sr, tr, demr)}) ≤ Q×max-flow(G, {(sr, tr,demr)}).

We are now ready to state the following result.

Theorem 3.6. There exists a polynomial-time algorithm that given a weighted graph G = (V, α)
and a k-vertex subset U ⊂ V , finds a O(log k/ log log k)-quality flow sparsifier H = (U, β).

Proof. Using the algorithm given in Theorem 4.5, we find the metric extension operator φ : DY →
DX with the smallest possible distortion. We output the coefficients of the linear functional β(dY ) =
α(φ(dY )) (see Lemma 3.4). Hence, by Theorem 4.3, the distortion of φ is at most O(log k/ log log k).
By Lemma 3.4, β is an O(log k/ log log k)-quality metric sparsifier. Finally, by Lemma 3.5, β is a
O(log k/ log log k)-quality flow sparsifier (and, thus, a O(log k/ log log k)-quality cut sparsifier).

4 Algorithms

In this section, we prove our main algorithmic results: Theorem 4.3 and Theorem 4.5. Theorem 4.3
asserts that metric extension operators with distortion O(log k/ log log k) exist. To prove Theo-
rem 4.3, we borrow some ideas from the paper of Moitra (2009). Theorem 4.5 asserts that the
optimal metric extension operator can be found in polynomial-time.

Let ΦY→X be the set of all metric extension operators (with arbitrary distortion). That is,
ΦY→X is the set of linear operators φ : DY → DX with nonnegative coefficients φipjq (see (1)) that
map every metric dY on DY to an extension of dY to X. We show that ΦY→X is closed and convex,
and that there exists a separation oracle for the set ΦY→X .

Corollary 4.1 (Corollary of Lemma 4.2 (see below)).

1. The set of linear operators ΦY→X is closed and convex.

2. There exists a polynomial-time separation oracle for ΦY→X .

Lemma 4.2. Let A ⊂ Rm and B ⊂ Rn be two polytopes defined by polynomially many linear
inequalities (polynomially many in m and n). Let ΦA→B be the set of all linear operators φ : Rm →
Rn, defined as

φ(a)i =
∑
p

φipap,

that map the set A into a subset of B.

1. Then ΦA→B is a closed convex set.
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2. There exists a polynomial-time separation oracle for ΦA→B. That is, there exists a polynomial-
time algorithm (not depending on A, B and ΦA→B), that given linear constraints for the sets
A, B, and the n×m matrix φ∗ip of a linear operator φ∗ : Rm → Rn

• accepts the input, if φ∗ ∈ ΦA→B.

• rejects the input, and returns a separating hyperplane, otherwise; i.e., if φ∗ /∈ ΦA→B,
then the oracle returns a linear constraint l such that l(φ∗) > 0, but for every φ ∈ ΦA→B,
l(φ) ≤ 0.

Proof. If φ∗, φ∗∗ ∈ ΦA→B and λ ∈ [0, 1], then for every a ∈ A, φ∗(a) ∈ B and φ∗∗(a) ∈ B. Since B
is convex, λφ∗(a) + (1−λ)φ∗∗(a) ∈ B. Hence, (λφ∗+ (1−λ)φ∗∗)(a) ∈ B. Thus, ΦA→B is convex. If
φ(k) is a Cauchy sequence in ΦA→B, then there exists a limit φ = limk→∞ φ

(k) and for every a ∈ A,
φ(a) = limk→∞ φ

(k)(a) ∈ B (since B is closed). Hence, ΦA→B is closed.
Let LB be the set of linear constraints defining B:

B = {b ∈ Rn : l(b) ≡
∑
i

libi + l0 ≤ 0 for all l ∈ LB}.

Our goal is to find “witnesses” a ∈ A and l ∈ LB such that l(φ∗(a)) > 0. Note that such a and l
exist if and only if φ∗ /∈ Φ. For each l ∈ LB, write a linear program. The variables of the program
are ap, where a ∈ Rm.

maximize: l(φ(a))
subject to: a ∈ A

This is a linear program solvable in polynomial-time since, first, the objective function is a
linear function of a (the objective function is a composition of a linear functional l and a linear
operator φ) and, second, the constraint a ∈ A is specified by polynomially many linear inequalities.

Thus, if φ∗ /∈ Φ, then the oracle gets witnesses a∗ ∈ A and l∗ ∈ LB, such that

l∗(φ∗(a∗)) ≡
∑
i

∑
p

l∗i φ
∗
ipap + l0 > 0.

The oracle returns the following (violated) linear constraint

l∗(φ(a∗)) ≡
∑
i

∑
p

l∗i φipap + l0 ≤ 0.

Theorem 4.3. Let X be a set of points, and Y be a k-point subset of X. For every set of
nonnegative weights αij on X × X, there exists a metric extension operator φ : DY → DX with
distortion O(log k/ log log k).

Proof. Fix a set of weights αij . Let D̃Y = {dY ∈ D : min-extY→X(dY , α) ≤ 1}. We shall show that

there exists φ ∈ ΦY→X , such that for every dY ∈ D̃Y

α(φ(dY )) ≤ O
(

log k

log log k

)
,
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then by the linearity of φ, for every dY ∈ DY

α(φ(dY )) ≤ O
(

log k

log log k

)
min-ext
Y→X

(dY , α). (5)

The set D̃Y is convex and compact, since the function min-extY→X(dY , α) is a convex function
of the first variable. The set ΦY→X is convex and closed. Hence, by the von Neumann (1928)
minimax theorem,

min
φ∈ΦY→X

max
dY ∈D̃Y

∑
i,j∈X

αij · φ(dY )(i, j) = max
dY ∈D̃Y

min
φ∈ΦY→X

∑
i,j∈X

αij · φ(dY )(i, j).

We will show that the right hand side is bounded by O(log k/ log log k), and therefore there exists
φ ∈ ΦY→X satisfying (5). Consider d∗Y ∈ D̃Y for which the maximum above is attained. By
Theorem 2.7 (FHRT 0-extension Theorem), there exists a 0-extension f : X → Y such that
f(p) = p for every p ∈ Y , and∑

i,j∈X
αij · d∗Y (f(i), f(j)) ≤ O

(
log k

log log k

)
min-ext
Y→X

(d∗Y , α) ≤ O
(

log k

log log k

)
.

Define φ∗(dY )(i, j) = dY (f(i), f(j)). Verify that φ∗(dY ) is a metric for every dY ∈ DY :

• φ∗(dY )(i, j) = dY (f(i), f(j)) ≥ 0;

• φ∗(dY )(i, j)+φ∗(dY )(j, k)−φ∗(dY )(i, k) = dY (f(i), f(j))+dY (f(j), f(k))−dY (f(i), f(k)) ≥ 0.

Then, for p, q ∈ Y , φ∗(dY )(p, q) = dY (f(p), f(q)) = dY (p, q), hence φ∗(dY ) is an extension of dY .
All coefficients φ∗ipjq of φ∗ (in the matrix representation (1)) equal 0 or 1. Thus, φ∗ ∈ ΦY→X . Now,

∑
i,j∈X

αij · φ∗(d∗Y )(i, j) =
∑
i,j∈X

αij · d∗Y (f(i), f(j)) ≤ O
(

log k

log log k

)
.

This finishes the the proof, that there exists φ ∈ ΦY→X satisfying the upper bound (5).

Theorem 4.4. Let X, Y , k, and α be as in Theorem 4.3. Assume further, that for the given α
and every metric dY ∈ DY , there exists a 0-extension f : X → Y such that∑

i,j∈X
αij · dY (f(i), f(j)) ≤ Q×min-ext

Y→X
(dY , α).

Then there exists a metric extension operator with distortion Q. Particularly, if the support of the
weights αij is a graph with an excluded minor Kr,r, then Q = O(r2). If the graph G has genus g,
then Q = O(log g).

The proof of this theorem is exactly the same as the proof of Theorem 4.3. For graphs with
an excluded minor we use a result of Calinescu, Karloff, and Rabani (2001) (with improvements
by Fakcharoenphol, and Talwar (2003)). For graphs of genus g, we use a result of Lee and Sidiropou-
los (2010).
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Theorem 4.5. There exists a polynomial time algorithm that given a set of points X, a k-point
subset Y ⊂ X, and a set of positive weights αij, finds a metric extension operator φ : DY → DX
with the smallest possible distortion Q.

Proof. In the algorithm, we represent the linear operator φ as a matrix φipjq (see (1)). To find
optimal φ, we write a convex program with variables Q and φipjq:

minimize: Q
subject to:

α(φ(dY )) ≤ Q×min-ext
Y→X

(dY , α), for all dY ∈ DY (6)

φ ∈ ΦY→X (7)

The convex problem exactly captures the definition of the extension operator. Thus the solution
of the program corresponds to the optimal Q-distortion extension operator. However, a priori, it
is not clear if this convex program can be solved in polynomial-time. It has exponentially many
linear constraints of type (6) and one convex non-linear constraint (7). We already know (see
Corollary 4.1) that there exists a separation oracle for φ ∈ ΦY→X . We now give a separation oracle
for constraints (6).

Separation oracle for (6). The goal of the oracle is given a linear operator φ∗ : dY 7→∑
p,q φ

∗
ipjqdY (p, q) and a real number Q∗ find a metric d∗Y ∈ DY , such that the constraint

α(φ∗(d∗Y )) ≤ Q∗ ×min-ext
Y→X

(d∗Y , α) (8)

is violated. We write a linear program on dY . However, instead of looking for a metric dY ∈ DY
such that constraint (8) is violated, we shall look for a metric dX ∈ DX , an arbitrary metric
extension of dY to X, such that

α(φ∗(dY )) ≡
∑
i,j∈X

αij · φ∗(dY )(i, j) > Q∗ ×
∑
i,j∈X

αijdX(i, j).

The linear program for finding dX is given below.

maximize: ∑
i,j∈X

∑
p,q∈Y

αij · φ∗ipjqdX(p, q)−Q∗ ×
∑
i,j∈X

αijdX(i, j)

subject to: dX ∈ DX

If the maximum is greater than 0 for some d∗X , then constraint (8) is violated for d∗Y = d∗X |Y (the
restriction of d∗X to Y ), because

min-ext
Y→X

(d∗Y , α) ≤
∑
i,j∈X

αijd
∗
X(i, j).
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If the maximum is 0 or negative, then all constraints (6) are satisfied, simply because

min-ext
Y→X

(d∗Y , α) = min
dX :dX is extension of d∗Y

∑
i,j∈X

αijdX(i, j).

5 Lipschitz Extendability

In this section, we present exact bounds on the quality of cut and metric sparsifiers in terms of
Lipschitz extendability constants. We show that there exist cut sparsifiers of quality ek(`1, `1) and
metric sparsifiers of quality ek(∞, `∞⊕1 · · ·⊕1 `∞), where ek(`1, `1) and ek(∞, `∞⊕1 · · ·⊕1 `∞) are
the Lipschitz extendability constants (see below for the definitions). We prove that these bounds are
tight. Then we obtain a lower bound of Ω(

√
log k/ log log k) for the quality of the metric sparsifiers

by proving a lower bound on ek(∞, `∞ ⊕1 · · · ⊕1 `∞). In the first preprint of our paper, we also
proved the bound of Ω( 4

√
log k/ log log k) on ek(`1, `1). After the preprint appeared on arXiv.org,

Johnson and Schechtman notified us that a lower bound of Ω(
√

log k/ log log k) on ek(`1, `1) follows
from their joint work with Figiel (Figiel, Johnson, and Schechtman 1988). With their permission,
we present the proof of this lower bound in Section D of the Appendix. This result implies a lower
bound of Ω(

√
log k/ log log k) on the quality of cut sparsifiers.

On the positive side, we show that if a certain open problem in functional analysis posed by Ball
(1992) (see also Lee and Naor (2005), and Randrianantoanina (2007)) has a positive answer then
ek(`1, `1) ≤ Õ(

√
log k); and therefore there exist Õ(

√
log k)-quality cut sparsifiers. This is both

an indication that the current upper bound of O(log k/ log log k) might not be optimal and that
improving lower bounds beyond of Õ(

√
log k) will require solving a long standing open problem

(negatively).

Question 1 ( Ball (1992); see also Lee and Naor (2005) and Randrianantoanina (2007)). Is it true
that ek(`2, `1) is bounded by a constant that does not depend on k?

Given two metric spaces (X, dX) and (Y, dY ), the Lipschitz extendability constant ek(X,Y ) is
the infimum over all constants K such that for every k point subset Z of X, every Lipschitz map
f : Z → Y can be extended to a map f̃ : X → Y with ‖f̃‖Lip ≤ K‖f‖Lip. We denote the supremum
of ek(X,Y ) over all separable metric spaces X by ek(∞, Y ). We refer the reader to Lee and Naor
(2005) for a background on the Lipschitz extension problem (see also Kirszbraun (1934), McShane
(1934), Marcus and Pisier (1984), Johnson and Lindenstrauss (1984), Ball (1992), Mendel and Naor
(2006), Naor, Peres, Schramm and Sheffield (2006)). Throughout this section, `1, `2 and `∞ denote
finite dimensional spaces of arbitrarily large dimension.

In Section 5.1, we establish the connection between the quality of vertex sparsifiers and ex-
tendability constants. In Section 5.2, we prove lower bounds on extendability constants ek(∞, `1)
and ek(`1, `1), which imply lower bounds on the quality of metric and cut sparsifiers respectively.
Finally, in Section 5.3, we show that if Question 1 (the open problem of Ball) has a positive answer
then there exist Õ(

√
log k)-quality cut sparsifiers.

5.1 Quality of Sparsifiers and Extendability Constants

Let Qcutk be the minimum over all Q such that there exists a Q-quality cut sparsifier for every graph
G = (V, α) and every subset U ⊂ V of size k. Similarly, let Qmetrick be the minimum over all Q such
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that there exists a Q-quality metric sparsifier for every graph G = (V, α) and every subset U ⊂ V
of size k.

Theorem 5.1. There exist cut sparsifiers of quality ek(`1, `1) for subsets of size k. Moreover, this
bound is tight. That is,

Qcutk = ek(`1, `1).

Proof. Denote Q = ek(`1, `1). First, we prove the existence of Q-quality cut sparsifiers. We
consider a graph G = (V, α) and a subset U ⊂ V of size k. Recall that for every cut (S,U \ S)
of U , the cost of the minimum cut extending (S,U \ S) to V is min-extU→V (δS , α), where δS is
the cut metric corresponding to the cut (S,U \ S). Let C = {(δS ,min-extU→V (δS , α)) ∈ DU × R :
δS is a cut metric} be the graph of the function δS 7→ min-extU→V (δS , α); and C be the convex
cone generated by C (i.e., let C be the cone over the convex closure of C). Our goal is to construct
a linear form β (a cut sparsifier) with non-negative coefficients such that x ≤ β(dU ) ≤ Qx for every
(dU , x) ∈ C and, in particular, for every (dU , x) ∈ C. First we prove that for every (d1, x1), (d2, x2) ∈
C there exists β (with nonnegative coefficients) such that x1 ≤ β(d1) and β(d2) ≤ Qx2. Since these
two inequalities are homogeneous, we may assume by rescaling (d2, x2) that Qx2 = x1. We are
going to show that for some p and q in U : d2(p, q) ≤ d1(p, q) and d1(p, q) 6= 0. Then the linear form

β(dU ) =
x1

d1(p, q)
dU (p, q)

satisfies the required conditions: β(d1) = x1; β(d2) = x1d2(p, q)/d1(p, q) ≤ x1 = Qx2.
Assume to the contrary that that for every p and q, d1(p, q) < d2(p, q) or d1(p, q) = d2(p, q) =

0. Since (dt(p, q), xt) ∈ C for t ∈ {1, 2}, by Carathéodory’s theorem (dt(p, q), xt) is a convex
combination of at most dim C + 1 =

(
k
2

)
+ 2 points lying on the extreme rays of C. That is, there

exists a set of mt ≤
(
k
2

)
+ 2 positive weights µSt such that dt =

∑
S µ

S
t δS , where δS ∈ DU is the cut

metric corresponding to the cut (S,U \ S), and xt =
∑

S µ
S
t min-extU→V (δS , α). We now define

two maps f1 : U → Rm1 and f2 : V → Rm2 . Let f1(p) ∈ Rm1 be a vector with one component
fS1 (p) for each cut (S,U \ S) such that µS1 > 0. Define fS1 (p) = µS1 if p ∈ S; fS2 (p) = 0, otherwise.
Similarly, let f2(i) ∈ Rm2 be a vector with one component fS2 (i) for each cut (S,U \ S) such
that µS2 > 0. Let (S∗, V \ S∗) be the minimum cut separating S and U \ S in G. Define fS2 (i)
as follows: fS2 (i) = µS2 if i ∈ S∗; fS2 (i) = 0, otherwise. Note that ‖f1(p) − f1(q)‖1 = d1(p, q)
and ‖f2(p) − f2(q)‖1 = d2(p, q). Consider a map g = f1f

−1
2 from f2(U) to f1(U) (note that if

f2(p) = f2(q) then d2(p, q) = 0, therefore, d1(p, q) = 0 and f1(p) = f2(q); hence g is well-defined).
For every p and q with d2(p, q) 6= 0,

‖g(f2(p))− g(f2(q))‖1 = ‖f1(p)− f1(q)‖1 = d1(p, q) < d2(p, q) = ‖f2(p)− f2(q)‖1.

That is, g is a strictly contracting map. Therefore, there exists an extension of g to a map g̃ :
f2(V )→ Rm1 such that

‖g̃(f2(i))− g̃(f2(j))‖1 < Q‖f2(i)− f2(j)‖1 = Qd2(i, j).

Denote the coordinate of g̃(f2(i)) corresponding to the cut (S,U \ S) by g̃S(f2(i)). Note that
g̃S(f2(p))/µS1 = fS1 (p)/µS1 equals 1 when p ∈ S and 0 when p ∈ U \ S. Therefore, the metric
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δ∗S(i, j) ≡ |g̃S(f2(i))− g̃S(f2(j))|/µS1 is an extension of the metric δS(i, j) to V . Hence,∑
i,j∈V

αijδ
∗
S(i, j) ≥ min-ext

U→V
(δS , α).

We have,

x1 =
∑
S

µS1 min-ext
U→V

(δS , α) ≤
∑
S

µS1
∑
i,j∈V

αijδ
∗
S(i, j) =

∑
S

∑
i,j∈V

αij |g̃S(f2(i))− g̃S(f2(j))|

=
∑
i,j∈V

αij‖g̃(f2(i))− g̃(f2(j))‖1 <
∑
i,j∈V

Qαijd2(i, j) = Qx2.

We get a contradiction. We proved that for every (d1, x1), (d2, x2) ∈ C there exists β such that
x1 ≤ β(d1) and β(d2) ≤ Qx2.

Now we fix a point (d1, x1) ∈ C and consider the set B of all linear functionals with nonnegative
coefficients β such that x1 ≤ β(d1). This is a convex closed set. We just proved that for every
(d2, x2) ∈ C there exists β ∈ B such that Qx2 − β(d2) ≥ 0. Therefore, by the von Neumann (1928)
minimax theorem, there exist β ∈ B such that for every (d2, x2) ∈ C, Qx2 − β(d2) ≥ 0. Now we
consider the set B′ of all linear functionals β with nonnegative coefficients such that Qx2−β(d2) ≥ 0
for every (d2, x2) ∈ C. Again, for every (d1, x1) ∈ C there exists β ∈ B′ such that β(d1) − x1 ≥ 0;
therefore, by the minimax theorem there exists β such that x ≤ β(dU ) ≤ Qx for every (d, x) ∈ C.
We proved that there exists a Q-quality cut sparsifier for G.

Now we prove that if for every graph G = (V, α) and a subset U ⊂ V of size k there exists a
cut sparsifier of size Q (for some Q) then ek(`1, `1) ≤ Q. Let U ⊂ `1 be a set of points of size k and
f : U → `1 be a 1-Lipschitz map. By a standard compactness argument (Theorem B.1), it suffices
to show how to extend f to a Q-Lipschitz map f̃ : V → `1 for every finite set V : U ⊂ V ⊂ `1.
First, we assume that f maps U to the vertices of a rectangular box {0, a1} × {0, a2} × . . . {0, ar}.
We consider a graph G = (V, α) on V with nonnegative edge weights αij . Let (U, β) be the optimal
cut sparsifier of G. Denote d1(p, q) = ‖p− q‖1 and d2(p, q) = ‖f(p)−f(q)‖1. Since f is 1-Lipschitz,
d1(p, q) ≥ d2(p, q).

Let Si = {p ∈ U : fi(p) = 0} (for 1 ≤ i ≤ r). Let S∗i be the minimum cut separating Si and
U \ Si in G. By the definition of the cut sparsifier, the cost of this cut is at most β(δSi). Define an
extension f̃ of f by f̃i(v) = 0 if v ∈ S∗i and f̃i(v) = ai otherwise. Clearly, f̃ is an extension of f .
We compute the “cost” of f̃ :∑

u,v∈V
αuv‖f̃(u)− f̃(v)‖1 =

r∑
i=1

∑
u,v∈V

αuv|f̃i(u)− f̃i(v)| ≤
r∑
i=1

β(aiδSi) = β(d2) ≤ β(d1).

(in the last inequality we use that d1(p, q) ≥ d2(p, q) for p, q ∈ U and that coefficients of β are
nonnegative). On the other hand, we have∑

u,v∈V
αuv‖u− v‖1 ≥ min-ext

U→V
(d1, α) ≥ β(d1)/Q.

We therefore showed that for every set of nonnegative weights α there exists an extension f̃ of f
such that ∑

u,v∈V
αuv‖f̃(u)− f̃(v)‖1 ≤ Q

∑
u,v∈V

αuv‖u− v‖1. (9)
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Note that the set of all extensions of f is a closed convex set; and ‖f(u) − f(v)‖1 is a convex
function of f :

‖(f1 + f2)(u)− (f1 + f2)(v)‖1 ≤ ‖f1(u)− f1(v)‖1 + ‖f2(u)− f2(v)‖1.

Therefore, by the Sion (1958) minimax theorem there exists an extension f̃ such that inequality (9)
holds for every nonnegative αij . In particular, when αuv = 1 and all other αu′v′ = 0, we get

‖f̃(u)− f̃(v)‖1 ≤ Q‖u− v‖1.

That is, f̃ is Q-Lipschitz.
Finally, we consider the general case when the image of f is not necessarily a subset of {0, a1}×

{0, a2} × . . . {0, ar}. Informally, we are going to replace f with an “equivalent map” g that maps
U to vertices of a rectangular box, then apply our result to g, obtain a Q-Lipschitz extension g̃ of
f , and finally replace g̃ with an extension f̃ of f .

Let fi(p) be the i-th coordinate of f(p). Let b1, . . . , bsi be the set of values of fi(p) (for p ∈ U).
Define map ψi : {b1, . . . , bsi} → Rsi as ψi(bj) = (b1, b2 − b1, . . . , bj − bj−1, 0, . . . , 0). The map
ψi is an isometric embedding of {bj} into (Rsi , ‖ · ‖1). Define map φi from (Rsi , ‖ · ‖1) to R as
φi(x) =

∑si
t=1 xt. Then φi is 1-Lipschitz and φi(ψi(bj)) = bj . Now let

g(p) = ψ1(f1(p))⊕ ψ2(f2(p))⊕ · · · ⊕ ψr(fr(p)) ∈
r⊕
i=1

Rsi ,

φ(y1 ⊕ · · · ⊕ yr) = φ1(y1)⊕ φ2(y2)⊕ · · · ⊕ φr(yr) ∈ `r1

(where r is the number of coordinates of f). Since maps ψi are isometries and f is 1-Lipschitz, g
is 1-Lipschitz as well. Moreover, the image of g is a subset of vertices of a box. Therefore, we can
apply our extension result to it. We obtain a Q-Lipschitz map g̃ : V →

⊕r
i=1 Rsi .

U� _

⊂
��

f
//

g

((
f(U)� _

⊂
��

ψ1⊕···⊕ψr
//
⊕r

i=1 Rsi

V
f̃

//

g̃
44`r1 oo

φ=φ1⊕···⊕φr ⊕r
i=1 Rsi

Note also that φ is 1-Lipschitz and φ(g(p)) = f(p). Finally, we define f̃(u) = φ(g̃(u)). We have
‖f̃‖Lip ≤ ‖g̃‖Lip‖φ‖Lip ≤ Q. This concludes the proof.

Theorem 5.2. There exist metric sparsifiers of quality ek(∞, `∞⊕1 · · ·⊕1 `∞) for subsets of size k
and this bound is tight. Since `1 is a Lipschitz retract of `∞⊕1 · · ·⊕1 `∞ (the retraction projects each
summand Li = `∞ to the first coordinate of Li), ek(∞, `∞ ⊕1 · · · ⊕1 `∞) ≥ ek(∞, `1). Therefore,
the quality of metric sparsifiers is at least ek(∞, `1) for some graphs. In other words,

Qmetrick = ek(∞, `∞ ⊕1 · · · ⊕1 `∞) ≥ ek(∞, `1).
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Proof. Let Q = ek(∞, `∞ ⊕1 · · · ⊕1 `∞). We denote the norm of a vector v ∈ `∞ ⊕1 · · · ⊕1 `∞ by
‖v‖ ≡ ‖v‖`∞⊕1···⊕1`∞ . First, we construct a Q-quality metric sparsifier for a given graph G = (V, α)
and U ⊂ V of size k.

Let C = {(dU ,min-extU→V (dU , α)) : dU ∈ DU} and C be the convex hull of C. We construct
a linear form β (a metric sparsifier) with non-negative coefficients such that x ≤ β(dU ) ≤ Qx for
every (dU , x) ∈ C.

The proof follows the lines of Theorem 5.1. The only piece of the proof that we need to modify
slightly is the proof that the following is impossible: for some (d1, x1) and (d2, x2) in C, x1 = Qx2

and for all p, q ∈ U either d1(p, q) < d2(p, q) or d1(p, q) = d2(p, q) = 0. Assume the contrary. We
represent (d1, x) as a convex combination of points (di1, x

i
1) in C (by Carathéodory’s theorem). Let

fi be an isometric embedding of the metric space (U, di1) into `∞. Then f ≡ ⊕ifi is an isometric
embedding of (U, d1) into `∞⊕1 · · · ⊕1 `∞. Let d∗2 be the minimum extension of d2 to V . Note that
f is a strictly contracting map from (U, d2) to `∞ ⊕1 · · · ⊕1 `∞:

‖f(p)− f(q)‖∞ =
∑
i

‖fi(p)− fi(q)‖∞ =
∑
i

di1(p, q) = d1(p, q) < d2(p, q),

for all p, q ∈ U such that d2(p, q) > 0. Therefore, there exists a Lipschitz extension of f : (U, d2)→
`∞⊕1 · · ·⊕1 `∞ to f̃ : (V, d∗2)→ `∞⊕1 · · ·⊕1 `∞ with ‖f̃‖Lip < Q. Let f̃i : V → `∞ be the projection
of f to the i-th summand. Let d̃i1(x, y) = ‖f̃i(x)− f̃i(y)‖∞ be the metric induced by f̃i on G. Let

d̃1(x, y) = ‖f̃(x)− f̃(y)‖∞ =
∑
i

‖f̃i(x)− f̃i(y)‖∞ =
∑
i

d̃i1(x, y)

be the metric induced by f̃ on G. Since f̃i(p) = fi(p) for all p ∈ U , metric d̃i1 is an extension of di1
to V . Thus α(d̃i1) ≥ min-extU→V (di1, α) = xi1. Therefore, α(d̃1) = α(

∑
d̃i1) ≥

∑
i x

i
1 = x1. Since

‖f̃‖Lip < Q, d̃1(x, y) = ‖f̃(x)− f̃(y)‖∞ < Qd∗2(x, y) (for every x, y ∈ V such that d∗2(x, y) > 0). We
have,

α(d̃1) < α(Qd∗2) = Qmin-ext
U→V

(d2, α) ≤ Qx2 = x1.

We get a contradiction.
Now we prove that if for every graph G = (V, α) and a subset U ⊂ V of size k there exists a

metric sparsifier of size Q (for some Q) then e(∞, `∞⊕1 · · ·⊕1 `∞) ≤ Q. Let (V, dV ) be an arbitrary
metric space; and U ⊂ V be a subset of size k. Let f : (U, dV |U )→ `∞⊕1 · · ·⊕1 `∞ be a 1-Lipschitz
map. We will show how to extend f to a Q-Lipschitz map f̃ : (V, dV ) → `∞ ⊕1 · · · ⊕1 `∞. We
consider graph G = (V, α) with nonnegative edge weights and a Q-quality metric sparsifier β.

Let fi : U → `∞ be the projection of f onto its i-th summand. Map fi induces metric di(p, q) =
‖fi(p)−fi(q)‖ on U . Let d̃i be the minimum metric extension of di to V ; let d̃∗(x, y) =

∑
i d̃
i(x, y).

Note that since f is 1-Lipschitz

d̃∗(p, q) =
∑
i

d̃i(p, q) =
∑
i

‖fi(p)− fi(q)‖ = ‖f(p)− f(q)‖ ≤ dV (p, q)

for p, q ∈ U . Therefore,

α(d̃∗) =
∑
i

α(d̃i) ≤
∑
i

β(di) = β(d̃∗|U ) ≤ β(dV |U ) ≤ Qα(dV )

(we use that all coefficients of β are nonnegative).
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Each map fi is an isometric embedding of (U, di) to `∞ (by the definition of di). Using the
McShane extension theorem2 (McShane 1934), we extend each fi a 1-Lipschitz map f̃i from (V, d̃i)
to `∞. Finally, we let f̃ = ⊕if̃i. Since each f̃i is an extension of fi, f̃ is an extension of f . For
every x, y ∈ V , we have ‖f̃(x)− f̃(y)‖ =

∑
i ‖f̃i(x)− f̃i(y)‖ = d̃∗(x, y). Therefore,∑

x,y∈V
αxy‖f̃(x)− f̃(y)‖ = α(d̃∗) ≤ Qα(dV ) = Q×

∑
x,y∈V

αxydV (x, y).

We showed that for every set of nonnegative weights α there exists an extension f such that the
inequality above holds. Therefore, by the minimax theorem there exists an extension f̃ such that
this inequality holds for every nonnegative αxy. In particular, when αxy = 1 and all other αx′y′ = 0,
we get

‖f̃(x)− f̃(y)‖ ≤ QdV (x, y).

That is, f̃ is Q-Lipschitz.

Remark 5.1. We proved in Theorem 5.1 that Qcutk = ek(`
M
1 , `N1 ) for

(
k
2

)
+ 2 ≤ M,N < ∞; by

a simple compactness argument the equality also holds when either one or both of M and N are
equal to infinity. Similarly, we proved in Theorem 5.2 that Qmetrick = ek(∞, `M∞ ⊕1 · · · ⊕1 `

M
∞︸ ︷︷ ︸

N

) for

k − 1 ≤M <∞ and
(
k
2

)
+ 2 ≤ N <∞; this equality also holds when either one or both of M and

N are equal to infinity. (We will not use use this observation.)

5.2 Lower Bounds and Projection Constants

We now prove lower bounds on the quality of metric and cut sparsifiers. We will need several
definitions from analysis. The operator norm of a linear operator T from a normed space U to a
normed space V is ‖T‖ ≡ ‖T‖U→V = supu6=0 ‖Tu‖V /‖u‖U . The Banach–Mazur distance between
two normed spaces U and V is

dBM (U, V ) = inf{‖T‖U→V ‖T−1‖V→U : T is a linear operator from U to V }.

We say that two Banach spaces are C-isomorphic if the Banach–Mazur distance between them is
at most C; two Banach spaces are isomorphic if the Banach–Mazur distance between them is finite.
A linear operator P from a Banach space V to a subspace L ⊂ V is a projection if the restriction
of P to L is the identity operator on L (i.e., P |L = IL).

Given a Banach space V and subspace L ⊂ V , we define the relative projection constant λ(L, V )
as: λ(L, V ) = inf{‖P‖ : P is a linear projection from V to L}.

Theorem 5.3.
Qmetrick = Ω(

√
log k/ log log k).

Proof. To establish the theorem, we prove lower bounds for ek(`∞, `1). Our proof is a modifi-
cation of the proof of Johnson and Lindenstrauss (1984) that ek(`1, `2) = Ω(

√
log k/ log log k).

Johnson and Lindenstrauss showed that for every space V and subspace L ⊂ V of dimension
d = bc log k/log log kc, ek(V,L) = Ω(λ(L, V )) (Johnson and Lindenstrauss (1984), see Appendix C,
Theorem C.1, for a sketch of the proof).

2The McShane extension theorem states that ek(M,R) = 1 for every metric space M .
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Our result follows from the lower bound of Grünbaum (1960): for a certain isometric embedding
of `d1 into `N∞, λ(`d1, `

N
∞) = Θ(

√
d) (for large enoughN). Therefore, ek(`

N
∞, `

d
1) = Ω(

√
log k/ log log k).

We now prove a lower bound on Qcutk . Note that the argument from Theorem 5.3 shows
that Qcutk = ek(`

d
1, `

N
1 ) = Ω(λ(L, `N1 )), where L is a subspace of `N1 isomorphic to `d1. Bourgain

(1981) proved that there is a non-complemented subspace isomorphic to `∞1 in L1. This implies
that λ(L, `N∞) (for some L) and, therefore, Qcutk are unbounded. However, quantitatively Bourgain’s
result gives a very weak bound of (roughly) log log log k. It is not known how to improve Bourgain’s
bound. So instead we present an explicit family of non-`1 subspaces {L} of `1 with λ(L, `1) =
Θ(
√

dimL) and dBM (L, `dimL
1 ) = O( 4

√
dimL).

Theorem 5.4.
Qcutk ≥ Ω( 4

√
log k/ log log k).

We shall construct a d dimensional subspace L of `N1 , with the projection constant λ(L, `1) ≥
Ω(
√
d) and with Banach–Mazur distance d(L, `d1) ≤ O( 4

√
d). By Theorem C.1 (as in Theorem 5.3),

ek(`1, L) ≥ Ω(
√
d) for d = bc log k/ log log kc. The following lemma then implies that ek(`1, `

d
1) ≥

Ω( 4
√
d).

Lemma 5.5. For every metric space X and finite dimensional normed spaces U and V ,

ek(X,U) ≤ ek(X,V )dBM (U, V ).

Proof. Let T : U → V be a linear operator with ‖T‖‖T−1‖ = dBM (U, V ). Consider a k-point
subset Z ⊂ X and a Lipschitz map f : Z → U . Then g = Tf is a Lipschitz map from Z to V . Let
g̃ be an extension of g to X with ‖g̃‖Lip ≤ ek(X,V )‖g‖Lip. Then f̃ = T−1g̃ is an extension of f
and

‖f̃‖Lip ≤ ‖T−1‖‖g̃‖Lip ≤ ‖T−1‖ · ek(X,V ) · ‖g‖Lip
≤ ‖T−1‖ · ek(X,V ) · ‖T‖‖f‖Lip = ek(X,V )dBM (U, V )‖f‖Lip.

Proof of Theorem 5.4. Fix numbers m > 0 and d = m2. Let S ⊂ Rd be the set of all vectors in
{−1, 0, 1}d having exactly m nonzero coordinates. Let f1, . . . , fd be functions from S to R defined
as fi(S) = Si (Si is the i-th coordinate of S). These functions belong to the space V = L1(S, µ)
(where µ is the counting measure on S). The space V is equipped with the L1 norm

‖f‖1 =
∑
S∈S
|f(S)|;

and the inner product

〈f, g〉 =
∑
S∈S

f(S)g(S).

The set of indicator functions {eS}S∈S

eS(A) =

{
1, if A = S;

0, otherwise
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is the standard basis in V .
Let L ⊂ V be the subspace spanned by f1, . . . , fd. We prove that the norm of the orthogonal

projection operator P⊥ : V → L is at least Ω(
√
d) and then using symmetrization show that P⊥

has the smallest norm among all linear projections. This approach is analogues to the approach
of Grünbaum (1960).

All functions fi are orthogonal and ‖fi‖22 = |S|/m (since for a random S ∈ S, Pr (fi(S) ∈ {±1}) =
1/m). We find the projection of an arbitrary basis vector eA (where A ∈ S) on L,

P⊥(eA) =

d∑
i=1

〈eA, fi〉
‖fi‖2

fi =

d∑
i=1

∑
B∈S

〈eA, fi〉
‖fi‖2

〈fi, eB〉eB

=
m

|S|
∑
B∈S

(
d∑
i=1

〈eA, fi〉〈fi, eB〉

)
eB.

Hence,

‖P⊥(eA)‖1 =
m

|S|
∑
B∈S

∣∣∣∣∣
d∑
i=1

〈eA, fi〉〈fi, eB〉

∣∣∣∣∣ . (10)

Notice, that
d∑
i=1

〈eA, fi〉〈fi, eB〉 =

d∑
i=1

AiBi = 〈A,B〉.

For a fixed A ∈ S and a random (uniformly distributed) B ∈ S the probability that A and B overlap
by exactly one nonzero coordinate (and thus |〈A,B〉| = 1) is at least 1/e. Therefore (from (10)),

‖P⊥(eA)‖1 ≥ Ω(m) = Ω(
√
d),

and ‖P⊥‖ ≥ ‖P⊥(eA)‖1/‖eA‖1 ≥ Ω(
√
d).

We now consider an arbitrary linear projection P : L→ V . We shall prove that∑
A∈S
‖P (eA)‖1 − ‖P⊥(eA)‖1 ≥ 0,

and hence for some eA, ‖P (eA)‖1 ≥ ‖P⊥(eA)‖1 ≥ Ω(
√
d). Let σAB = sgn(〈P⊥(eA), eB〉) =

sgn(〈A,B〉). Then,

‖P⊥(eA)‖1 =
∑
B∈S
|〈P⊥(eA), eB〉| =

∑
B∈S

σAB〈P⊥(eA), eB〉,

and, since σAB ∈ [−1, 1],

‖P (eA)‖1 =
∑
B∈S
|〈P (eA), eB〉| ≥

∑
B∈S

σAB〈P (eA), eB〉.

Therefore, ∑
A∈S
‖P (eA)‖1 − ‖P⊥(eA)‖1 ≥

∑
A∈S

∑
B∈S

σAB〈P (eA)− P⊥(eA), eB〉.
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Represent operator P as the sum

P (g) = P⊥(g) +
d∑
i=1

ψi(g)fi,

where ψi are linear functionals3 with kerψi ⊃ L. We get

∑
A∈S

∑
B∈S

σAB〈P (eA)− P⊥(eA), eB〉 =
∑
A∈S

∑
B∈S

σAB〈
d∑
i=1

ψi(eA)fi, eB〉

=
d∑
i=1

ψi

(∑
A∈S

∑
B∈S

σAB〈eB, fi〉eA

)
.

We now want to show that each vector

gi =
∑
A∈S

∑
B∈S

σAB〈eB, fi〉eA

is collinear with fi, and thus gi ∈ L ⊂ kerψi and ψi(gi) = 0. We need to compute gi(S) for every
S ∈ S,

gi(S) =
∑
A∈S

∑
B∈S

σAB〈eB, fi〉eA(S) =
∑
B∈S

σSBBi,

we used that eA(S) = 1 if A = S, and eA(S) = 0 otherwise. We consider a group H ∼= Sd n Zd2 of
symmetries of S. The elements of H are pairs h = (π, δ), where each π ∈ Sd is a permutation on
{1, . . . , d}, and each δ ∈ {−1, 1}d. The group acts on S as follows: it first permutes the coordinates
of every vector S according to π and then changes the signs of the j-th coordinate if δj = −1 i.e.,

h : S = (S1, . . . , Sd) 7→ hS = (δ1Sπ−1(1), . . . , δdSπ−1(d)).

The action of G preserves the inner product between A,B ∈ S i.e., 〈hA, hB〉 = 〈A,B〉 and thus
σ(hA)(hB) = σAB. It is also transitive. Moreover, for every S, S′ ∈ S, if Si = S′i, then there exists
h ∈ G that maps S to S′, but does not change the i-th coordinate (i.e., π(i) = i and δi = 1). Hence,
if Si = S′i, then for some h

gi(S
′) = gi(hS) =

∑
B∈S

σ(hS)BBi =
∑
B∈S

σ(hS)(hB)(hB)i =
∑
B∈S

σSB(hB)i =
∑
B∈S

σSBBi = gi(S).

On the other hand, gi(S) = −gi(−S). Thus, if Si = −S′i, then gi(S) = −gi(S′). Therefore,
gi(S) = λSi for some λ, and gi = λfi. This finishes the prove that ‖P‖ ≥ Ω(

√
d).

We now estimate the Banach–Mazur distance from `d1 to L.

Lemma 5.6. We say that a basis f1, . . . , fd of a normed space (L, ‖ · ‖L) is symmetric if the norm
of vectors in L does not depend on the order and signs of coordinates in this basis:

∥∥∥ d∑
i=1

cifi

∥∥∥
L

=
∥∥∥ d∑
i=1

δicπ(i)fi

∥∥∥
L
,

3The explicit expression for ψi is as follows ψi(g) = 〈P (g)− P⊥(g), fi〉/‖fi‖2.
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for every c1, . . . , cd ∈ R, δ1, . . . , δd ∈ {±1} and π ∈ Sd.
Let f1, . . . , fd be a symmetric basis. Then

dBM (L, `d1) ≤ d‖f1‖L
‖f1 + · · ·+ fd‖L

.

Proof. Denote by η1, . . . ηd the standard basis of `d1. Define a linear operator T : `d1 → L as
T (ηi) = fi. Then dBM (L, `d1) ≤ ‖T‖ · ‖T−1‖. We have,

‖T‖ = max
c∈`d1:‖c‖1=1

‖T (c1η1 + · · ·+ cdηd)‖L ≤ max
c∈`d1:‖c‖1=1

(‖T (c1η1)‖L + · · ·+ ‖T (cdηd)‖L)

= max
i
‖T (ηi)‖L = max

i
‖fi‖L = ‖f1‖L.

On the other hand,

(‖T−1‖)−1 = min
c∈`d1:‖c‖1=1

‖T−1(c1η1 + · · ·+ cdηd)‖L = min
c∈`d1:‖c‖1=1

‖c1f1 + · · ·+ cdfd‖L.

Since the basis f1, . . . , fd is symmetric, we can assume that all ci ≥ 0. We have,

∥∥∥ d∑
i=1

cifi

∥∥∥
L

= Eπ∈Sd
∥∥∥ d∑
i=1

cπ(i)fi

∥∥∥
L
≥
∥∥∥Eπ∈Sd d∑

i=1

cπ(i)fi

∥∥∥
L

=
∥∥∥1

d

d∑
i=1

fi

∥∥∥
L
.

We apply this lemma to the space L and basis f1, . . . , fd. Note that ‖fi‖1 = |S|/m and

‖f1 + · · ·+ fd‖1 =
∑
S∈S

∣∣∣ d∑
i=1

Si

∣∣∣.
Pick a random S ∈ S. Its m nonzero coordinates distributed according to the Bernoulli distribution,

thus
∣∣∣∑i Si

∣∣∣ equals in expectation Ω(
√
m) and therefore the Banach–Mazur distance between `d1

and L equals

dBM (L, `d1) = O

(
d× |S|

m
× 1√

m|S|

)
= O(

4
√
d).

5.3 Conditional Upper Bound and Open Question of Ball

We show that if Question 1 (see page 13) has a positive answer then there exist Õ(
√

log k)-quality
cut sparsifiers.

Theorem 5.7.
Qcutk = ek(`1, `1) ≤ O(e(`2, `1)

√
log k log log k).

Proof. We show how to extend a map f that maps a k-point subset U of `1 to `1 to a map f̃ : `1 → `1
via factorization through `2. In our proof, we use a low distortion Fréchet embedding of a subset
of `1 into `2 constructed by Arora, Lee, and Naor (2007):
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Theorem 5.8 (Arora, Lee, and Naor (2007), Theorem 1.1). Let (U, d) be a k-point subspace of
`1. Then there exists a probability measure µ over random non-empty subsets A ⊂ U such that for
every x, y ∈ U

Eµ[|d(x,A)− d(y,A)|2]1/2 = Ω

(
d(x, y)√

log k log log k

)
.

We apply this theorem to the set U with d(x, y) = ‖x−y‖1. We get a probability distribution µ
of sets A. Let g be the map that maps each x ∈ `1 to the random variable d(x,A) in L2(µ). Since
for every x and y in `1, Eµ[|d(x,A) − d(y,A)|2]1/2 ≤ Eµ[‖x − y‖21]1/2 = ‖x − y‖1, the map g is a
1-Lipschitz map from `1 to L2(µ). On the other hand, Theorem 5.8 guarantees that the Lipschitz
constant of g−1 restricted to g(U) is at most O(

√
log k log log k).

U� _

⊂
��

g
//

f

))
g(U)� _

⊂
��

h // `1

`1
g

//

f̃

44L2(µ)
h̃ // `1

Now we define a map h : g(U)→ `1 as h(y) = f(g−1(y)). The Lipschitz constant of h is at most
‖f‖Lip‖g−1‖Lip = O(

√
log k log log k). We extend h to a map h̃ : L2(µ) → `1 such that ‖h̃‖Lip ≤

ek(`2, `1)‖h‖Lip = O(ek(`2, `1)
√

log k log log k). We finally define f̃(x) = h̃(g(x)). For every p ∈ U ,
f̃(p) = h̃(g(p)) = h(g(p)) = f(p); ‖f̃‖Lip ≤ ‖h̃‖Lip‖g‖Lip = O(ek(`2, `1)

√
log k log log k). This

concludes the proof.

Corollary 5.9. If Question 1 has a positive answer then there exist Õ(
√

log k) cut sparsifiers. On
the other hand, any lower bound on cut sparsifiers better than Ω̃(

√
log k) would imply a negative

answer to Question 1.

Remark 5.2. There are no pairs of Banach spaces (X,Y ) for which ek(X,Y ) is known to be greater
than ω(

√
log k) (see e.g. Lee and Naor (2005)). If indeed ek(X,Y ) is always O(

√
log k) then there

exist O(
√

log k)-quality metric sparsifiers.

6 Certificates for Quality of Sparsification

In this section, we show that there exist “combinatorial certificates” for cut and metric sparsification
that certify that Qcutk ≥ Q and Qmetrick ≥ Q.

Definition 6.1. A (Q, k)-certificate for cut sparsification is a tuple (G,U, µ1, µ2) where G = (V, α)
is a graph (with non-negative edge weights α), U ⊂ V is a subset of k terminals, and µ1 and µ2

are distributions of cuts on G such that for some (“scale”) c > 0

Pr
S∼µ1

(p ∈ S, q /∈ S) ≤ c Pr
S∼µ2

(p ∈ S, q /∈ S) ∀p, q ∈ U,

ES∼µ1 min-ext
U→V

(δS , α) ≥ c ·Q · ES∼µ2 min-ext
U→V

(δS , α) > 0,
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where min-extU→V (δS , α) is the cost of the minimum cut in G that separates S and U \ S (w.r.t.
to edge weights α).

Similarly, a (Q, k)-certificate for metric sparsification is a tuple (G,U, {di}m1
i=1) where G = (V, α)

is a graph (with non-negative edge weights α), U ⊂ V is a subset of k terminals, and {di}mi=1 is a
family of metrics on U such that

m∑
i=1

min-ext
U→V

(di, α) ≥ Qmin-ext
U→V

( m∑
i=1

di, α
)
> 0.

Theorem 6.2. If there exists a (Q, k)-certificate for cut or metric sparsification, then Qcutk ≥ Q
or Qmetrick ≥ Q, respectively. For every k, there exist (Qcutk , k)-certificate for cut sparsification, and
(Qmetrick − ε, k)-certificate for metric sparsification (for every ε > 0).

Proof. Let (G,U, µ1, µ2) be a (Q, k)-certificate for cut sparsification. Let (U, β) be a Qcutk -quality
cut sparsifier for G. Then

ES∼µ1 min-ext
U→V

(δS , α) ≤ ES∼µ1
∑

p∈S,q∈U\S

βpq =
∑
p,q∈U

βpq Pr
S∼µ1

(p ∈ S, q ∈ U \ S)

≤ c
∑
p,q∈U

βpq Pr
S∼µ2

(p ∈ S, q ∈ U \ S) = ES∼µ2c
∑

p∈S,q∈U\S

βpq ≤ c ·Qcutk · ES∼µ2 min-ext
U→V

(δS , α).

Therefore, Qcutk ≥ Q.
Now, let (G,U, {di}mi=1) be a (Q, k)-certificate for metric sparsification. Let (U, β) be a Qmetrick -

quality metric sparsifier for G. Then

m∑
i=1

min-ext
U→V

(di, α) ≤
m∑
i=1

∑
p,q∈U

βpqdi(p, q) =
∑
p,q∈U

βpq

m∑
i=1

di(p, q)

≤ Qmetrick min-ext
U→V

( m∑
i=1

di, α
)
.

Therefore, Qmetrick ≥ Q.
The existence of (Qcutk , k)-certificates for cut sparsification, and (Qmetrick − ε, k)-certificates for

metric sparsification follows immediately from the duality arguments in Theorems 5.1 and 5.2. We
omit the details in this version of the paper.
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M. D. Kirszbraun (1934). Über die zusammenziehenden und Lipschitzchen Transformationen. Fund.
Math., (22):77–108, 1934.

25



J. Lee and A. Naor (2005). Extending Lipschitz functions via random metric partitions. Inventiones
Mathematicae 160 (2005), no. 1, pp. 59–95.

J. Lee and A. Sidiropoulos (2010). Genus and the geometry of the cut graph. SODA 2010.

T. Leighton and A. Moitra (2010). Extensions and Limits to Vertex Sparsification. STOC 2010.

M. B. Marcus and G. Pisier (1984). Characterizations of almost surely continuous p-stable random
Fourier series and strongly stationary processes. Acta Math., 152(3-4):245–301, 1984.

E. J. McShane (1934). Extension of range of functions, Bull. Amer. Math. Soc., 40:837–842, 1934.

M. Mendel and A. Naor (2006). Some applications of Ball’s extension theorem. Proc. Amer. Math.
Soc. 134 (2006), no. 9, 2577–2584.

A. Moitra (2009). Approximation Algorithms for Multicommodity-Type Problems with Guarantees
Independent of the Graph Size. FOCS 2009, pp. 3–12.

A. Naor, Y. Peres, O. Schramm, and S. Sheffield (2006). Markov chains in smooth Banach spaces
and Gromov-hyperbolic metric spaces. Duke Math. J. 134 (2006), no. 1, 165–197.

J. von Neumann (1928). Zur Theorie der Gesellshaftsphiele. Math. Ann. 100 (1928), pp. 295–320.

G. Pisier. Factorization of Linear Operators and Geometry of Banach Spaces. CBMS Regional
Conference Series in Mathematics, 60. American Mathematical Society, Providence, RI, 1986.

B. Randrianantoanina (2007). Extensions of Lipschitz maps. International Conference on Banach
Spaces and Operator Spaces, 2007.

A. Schrijver (2003). Combinatorial Optimization: Polyhedra and Efficiency. Springer. Berlin. 2003.

M. Sion (1958). On general minimax theorems. Pac. J. Math. 8 (1958) pp. 171–176.

A Flow Sparsifiers are Metric Sparsifiers

We have already established (in Lemma 3.5) that every metric sparsifier is a flow sparsifier. We
now prove that, in fact, every flow sparsifier is a metric sparsifier. We shall use the same (standard)
dual LP for the concurrent multi-commodity flow as we used in the proof of Lemma 3.5. Denote
the sum

∑
r dY (sr, tr) demk by γ(dY ). Then the definition of flow sparsifiers can be reformulated

as follows: The graph (Y, β) is a Q-quality flow sparsifier for (X,α), if for every linear functional
γ : DY → R with nonnegative coefficients,

min
dX∈DX :γ(dX |Y )≥1

α(dX) ≤ min
dY ∈DY :γ(dY )≥1

β(dY ) ≤ Q× min
dX∈DX :γ(dX |Y )≥1

α(dX).

Lemma A.1. Let (X,α) be a weighted graph and let Y ⊂ X be a subset of vertices. Suppose, that
(Y, β) is a Q-quality flow sparsifier, then (Y, β) is also a Q-quality metric sparsifier.
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Proof. We need to verify that for every dY ∈ DY ,

min-ext
Y→X

(dY , α) ≤ β(dY ) ≤ Q×min-ext
Y→X

(dY , α).

Verify the first inequality. Suppose that it does not hold for some d∗Y ∈ DY . Let D̃Y = {dY ∈
DY : min-extY→X(dY , α) ≤ β(d∗Y )}. The set D̃Y is closed (and compact, if the graph is connected)
and convex (because min-ext is a convex function of the first variable). Since min-extY→X(d∗Y , α) >

β(d∗Y ), d∗Y /∈ D̃Y . Hence, there exists a linear functional γ separating d∗Y from D̃Y . That is,

γ(d∗Y ) ≥ 1, but for every dY ∈ D̃Y , γ(dY ) < 1. We show in Lemma A.3, that there exists such γ
with nonnegative coefficients. Then, by the definition of the flow sparsifier,

min
dX∈DX :γ(dX |Y )≥1

α(dX) ≤ min
dY ∈DY :γ(dY )≥1

β(dY ).

But, the left hand side

min
dX∈DX :γ(dX |Y )≥1

α(dX) = min
dY ∈DY :γ(dY )≥1

min-ext
Y→X

(dY , α) ≥ min
dY /∈D̃Y

min-ext
Y→X

(dY , α) > β(d∗Y );

and the right hand side is at most β(d∗Y ), since γ(d∗Y ) ≥ 1. We get a contradiction.
Verify the second inequality. Let γ(dY ) = β(dY )/β(d∗Y ). By the definition of the flow sparsifier,

min
dY ∈DY :γ(dY )≥1

β(dY ) ≤ Q× min
dX∈DX :γ(dX |Y )≥1

α(dX).

The left hand side is at least β(d∗Y ) (by the definition of γ). Thus, for every dX ∈ DX satisfying
γ(dX |Y ) ≥ 1, and particularly, for dX equal to the minimum extension of dY , Q × α(dX) ≥
β(d∗Y ).

Lemma A.2 (Minimum extension is monotone). Let X be an arbitrary set, Y ⊂ X, and αij be
a nonnegative set of weights on pairs (i, j) ∈ X ×X. Suppose that a metric d∗Y ∈ DY dominates
metric d∗∗Y ∈ DY i.e., d∗Y (p, q) ≥ d∗∗Y (p, q) for every p, q ∈ Y . Then,

min-ext
Y→X

(d∗Y , α) ≥ min-ext
Y→X

(d∗∗Y , α).

Proof sketch. Let d∗X be the minimum extension of d∗Y . Consider the distance function

d∗∗X (i, j) =

{
d∗∗Y (i, j), if i, j ∈ Y ;

d∗X(i, j), otherwise.

The function d∗∗X (i, j) does not necessarily satisfy the triangle inequalities. However, the shortest
path metric dsX induced by d∗∗X does satisfy the triangle inequalities, and is an extension of d∗∗Y .
Since, d∗X(i, j) ≥ d∗∗X (i, j) ≥ dsX(i, j) for every i, j ∈ X,

min-ext
Y→X

(d∗Y , α) = α(d∗X) ≥ α(dsX) ≥ min-ext
Y→X

(d∗∗Y , α).

27



Lemma A.3. Let D̃Y = {dY ∈ DY : min-extY→X(dY , α) ≤ 1}, and d∗Y ∈ DY \ D̃Y . Then, there
exists a linear functional

γ(dY ) =
∑

p,q∈DY

γpqdY (p, q),

with nonnegative coefficients γpq separating d∗Y from D̃Y , i.e., γ(d∗Y ) ≥ 1, but for every dY ∈ D̃Y ,
γ(dY ) < 1.

Proof. Let Γ be the set of linear functionals γ with nonnegative coefficients such that γ(d∗Y ) ≥ 1.

This set is convex. We need to show that there exists γ ∈ Γ such that γ(dY ) < 1 for every dY ∈ D̃Y .
By the von Neumann (1928) minimax theorem, it suffices to show that for every d∗∗Y ∈ D̃Y , there
exists a linear functional γ ∈ Γ such that γ(d∗∗Y ) < 1. By Lemma A.2, since

min-ext
Y→X

(d∗∗Y , α) < 1 ≤ min-ext
Y→X

(d∗Y , α),

there exist p, q ∈ Y , such that d∗∗Y (p, q) < d∗Y (p, q). The desired linear functional is γ(dY ) =
dY (p, q)/d∗Y (p, q).

B Compactness Theorem for Lipschitz Extendability Constants

In this section, we prove a compactness theorem for Lipschitz extendability constants.

Theorem B.1. Let X be an arbitrary metric space and V be a finite dimensional normed space.
Assume that for some K and every Z ⊂ Z̃ ⊂ V with |Z| = k, |Z̃| <∞, every map f : Z → V can
be extended to a map f̃ : Z̃ → V so that ‖f̃‖Lip ≤ K‖f‖Lip. Then ek(X,V ) ≤ K.

Proof. Fix a set Z and a map f : Z → V . Without loss of generality we may assume that
‖f‖Lip = 1. We shall construct a K-Lipschitz extension f̂ : X → V of f .

Choose an arbitrary z0 ∈ Z. Consider the following topological space of maps from X to V :

F = {h : X → V : ∀x ∈ X ‖h(x)− f(z0)‖V ≤ Kd(z0, x)} ∼=
∏
x∈X

BV (f(z0),Kd(z0, x)),

equipped with the product topology (the topology of pointwise convergence); i.e., a sequence of func-
tions fi converges to f if for every x ∈ X, fi(x)→ f(x). Note that every ball BV (f(z0),Kd(z0, x))
is a compact set. By Tychonoff’s theorem the product of compact sets is a compact set. Therefore,
F is also a compact set.

Let M be the set of maps in F that extend f : M = {h ∈ F : h(z) = f(z) for all z ∈ Z}. Let
Cx,y (for x, y ∈ X) be the set of functions in F that increase the distance between points x and y
by at most a factor of K: Cx,y = {h ∈ F : ‖h(x)− h(y)‖V ≤ Kd(x, y)}. Note that all sets M and
Cx,y are closed. We prove that every finite family of sets Cx,y has a non-empty intersection with
M . Consider a finite family of sets: Cx1,y1 , . . . , Cxn,yn . Let Z̃ = Z ∪

⋃n
i=1{xi, yi}. By the condition

of the theorem there exists a K-Lipschitz map f̃ : Z̃ → V extending f . Then f̃ ∈
⋂n
i=1Cxi,yi ∩M .

Therefore,
⋂n
i=1Cxi,yi ∩M 6= ∅.

Since every finite family of closed sets in {M,Cx,y} has a non-empty intersection and F is

compact, all sets M and Cx,y have a non-empty intersection. Let f̂ ∈ M ∩
⋂
x,y∈X Cx,y. Since

f̂ ∈M , f̂ is an extension of f . Since f̂ ∈ Cx,y for every x, y ∈ X, the map f̂ is K-Lipschitz.
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C Lipschitz Extendability and Projection Constants

In Section 5.2, we use the following theorem of Johnson and Lindenstrauss (1984). In their paper,
however, this theorem is stated in a slightly different form. We sketch here the original proof of
Johnson and Lindenstrauss for completeness.

Theorem C.1 (Johnson and Lindenstrauss (1984), Theorem 3). Let V be a Banach space, L ⊂ V
be a d-dimensional subspace of V , and U be a finite dimensional normed space. Then every linear
operator T : L → U , with ‖T‖‖T−1‖ = O(d), can be extended to a linear operator T̃ : V → U
so that ‖T̃‖ = O(ek(V,U))‖T‖, where k is such that d ≤ c log k/log log k (where c is an absolute
constant).

In particular, for U = L, the identity operator IL on L can be extended to a projection P : V → L
with ‖P‖ ≤ O(ek(V,L)). Therefore, λ(L, V ) = O(ek(V,L)).

First, we address a simple case when ek(V,U) ≥
√
d. By the Kadec–Snobar theorem there exists

a projection PL from V to L with ‖PL‖ ≤
√
d. Therefore, TPL is an extension of T with the norm

bounded by
√
d‖T‖ and we are done. So we assume below that ek(V,U) ≤

√
d

We construct the extension T̃ in several steps. Denote α = ‖T‖‖T−1‖. First, we choose an
ε-net A of size at most k− 1 on the unit sphere S(L) = {v ∈ L : ‖v‖V = 1} for ε ∼ 1/(α log2 k) (to
be specified later).

Lemma C.2 (Johnson and Lindenstrauss (1984), Lemma 3). If L is a d-dimensional normed space
and ε > 0 then S(L) admits an ε-net of cardinality at most (1 + 4/ε)d.

Let T1 be the restriction of T to A∪ {0}. Let S(V ) = {v ∈ V : ‖v‖V = 1}. By the definition of
the Lipschitz extendability constant ek(V,U), there exists an extension T2 : S(V ) → U of T1 with
‖T2‖Lip ≤ ek(V,U)‖T1‖Lip ≤ ek(V,U)‖T‖. Now we consider the positively homogeneous extension
T3 : V → U of T2 defined as

T3(v) = ‖v‖V T2

(
v

‖v‖V

)
.

The following lemma gives a bound on the norm of T3.

Lemma C.3 (Johnson and Lindenstrauss (1984), Lemma 2). Suppose that V and U are normed
spaces, and f : S(V )∪{0} → U is a Lipschitz map with f(0) = 0. Then the positively homogeneous
extension f̃ of f is Lipschitz and

‖f̃‖Lip ≤ 2‖f‖Lip + sup
v∈S(V )

‖f(v)‖U .

Since T2(0) = 0 and ‖T2‖Lip ≤ ek(V,U)‖T‖, supv∈S(V ) ‖T2v‖V ≤ ‖T2‖Lip ≤ ek(V,U)‖T‖.
Therefore, ‖T3‖Lip ≤ 3ek(V,U)‖T‖. Now we prove that there exists a Lipschitz map T4 : V → U ,
whose restriction to L is very close to T . We apply the following lemma to F = T3 and obtain a
map T4 = F̃ : V → U .

Lemma C.4 (Johnson and Lindenstrauss (1984), Lemma 5). Suppose L ⊂ V and U are Banach
spaces with dimL = d <∞, F : V → U is Lipschitz with F positively homogeneous (i.e. F (λv) =
λF (v) for λ > 0, v ∈ V ) and T : L → V is linear. Then there is a positively homogeneous map
F̃ : V → U which satisfies
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• ‖F̃ |L − T‖Lip ≤ (8d+ 2) supv∈S(L) ‖F (v)− T (v)‖V ,

• ‖F̃‖Lip ≤ 4‖F‖Lip.

Note that for every u ∈ S(L) there exists v ∈ A with ‖u− v‖V ≤ ε. Therefore,

‖T3u− Tu‖V ≤ ‖T3u− T3v‖V + ‖T3v − Tv‖V + ‖Tv − Tu‖V
≤ ‖T3‖Lip · ε+ 0 + ‖T‖ε ≤ (3ek(V,U) + 1)‖T‖ε.

Hence,
‖T4|L − T‖Lip ≤ (8d+ 2)(3ek(V,U) + 1)‖T‖ε ≤ 40dek(V,U)‖T‖ε,

and ‖T4‖Lip ≤ 12ek(V,U)‖T‖. Finally, we approximate T4 with a linear bounded map T5 : V → U ,
whose restriction to L is very close to T .

Lemma C.5 (Johnson and Lindenstrauss (1984), Proposition 1). Suppose L ⊂ V and U are Banach
spaces, U is a reflexive space, f : V → L is Lipschitz, and T : L → U is bounded, linear. Then
there is a linear operator F : V → U that satisfies ‖F‖ ≤ ‖f‖Lip and ‖F |L−T‖L→U ≤ ‖fL−U‖Lip.

Since the space U is finite dimensional, it is reflexive. We apply the lemma to f = T4 and
obtain a linear operator T5 : V → U such that ‖T5‖ ≤ 12ek(V,U)‖T‖ and

‖T5|L − T‖L→U ≤ 40dek(V,U)‖T‖ε.

Let P : U → T (L) be a projection of U on T (L) with ‖P‖ ≤
√
d (such projection exists by the

Kadec–Snobar theorem). Consider a linear operator φ = T5T
−1P + (IU − P ) from U to U . Note

that for every u ∈ U ,

‖φu− u‖U = ‖T5T
−1Pu− Pu‖U = ‖T5T

−1Pu− TT−1Pu‖U ≤ 40dek(V,U)‖T‖ε · ‖T−1Pu‖U
≤ 40dek(V,U)‖T‖ε ·

√
d‖T−1‖‖u‖U ≤ 40αd2ε‖u‖U

(we used that ek(V,U) ≤
√
d and ‖P‖ ≤

√
d). We choose ε ∼ 1/(α log2 k) so that 40αd2ε < 1/2.

Then ‖φ− IU‖ ≤ 1/2. Thus φ is invertible:

φ−1 = (IU − (IU − φ))−1 =
∞∑
i=0

(IU − φ)k,

and

‖φ−1‖ ≤
∞∑
i=0

‖IU − φ‖k ≤ 2.

Finally, we let T̃ = φ−1T5. Note that for every u ∈ L, φTu = T5u = φT̃u, thus T̃ is an extension
of T . The norm of T̃ is bounded by ‖φ‖‖T5‖ ≤ 24ek(V,U)‖T‖.
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D Improved Lower Bound on ek(`1, `1)

After a preliminary version of our paper appeared as a preprint, Johnson and Schechtman notified us
that our lower bound of Ω( 4

√
log k/ log log k) on ek(`1, `1) can be improved to Ω(

√
log k/ log log k).

This result follows from the paper of Figiel, Johnson, and Schechtman (1988) that studies factoriza-
tion of operators to L1 through L1. With the permission of Johnson and Schechtman, we present
this result below.

Before we proceed with the proof, we state the result of Figiel, Johnson, and Schechtman (1988).

Theorem D.1 (Corollary 1.5, Figiel, Johnson, and Schechtman (1988)). Let X be a d-dimensional
subspace of L1(R,µ) (a set of real valued functions on R with the ‖ · ‖1 norm). Suppose that for
every f ∈ X and every 2 ≤ r <∞, ‖f‖r ≤ C

√
r‖f‖1 (where C is some constant not depending on

f and r). Let w : X → `m1 and u : `m1 → L1(R,µ) be linear operators such that uw = IX is the
identity operator on X. Then

ranku ≥ 2∆d where ∆ =
1

(16CdBM (X, `d2)‖w‖‖u‖)2
.

Corollary D.2. ek(`1, `1) = Ω
(√

log k/ log log k
)
.

Proof. Denote d = c log k/ log log k, where c is the constant from Theorem C.1. Consider U = `2d1 .
By Kashin’s theorem (Kashin 1977), there exists an “almost Euclidean” d-dimensional subspace
X ′ in U , that is, a subspace X ′ such that

c1‖x‖1 ≤
√
d ‖x‖2 ≤ c2‖x‖1

for every x ∈ X ′ (and some positive absolute constants c1 and c2). Let R = {±1}2d ⊂ U be a
2d-dimensional hypercube, µ be the uniform probabilistic measure on R and V = L1(R,µ). We
consider a natural embedding u′ of X ′ into V : each vector x ∈ X ′ is mapped to a function u′(x) ∈ V
defined by u′(x) : y 7→ 〈x, y〉. Recall that by the Khintchine inequality,

Ap‖x‖2 ≤ ‖u′(x)‖p ≡ (Ey∈R [|〈x, y〉|p])1/p ≤ Bp‖x‖2,

where Ap and Bp are some positive constants. In particular, Haagerup (1982) proved that the
inequality holds for p = 1, with A1 =

√
1/2 and B1 =

√
2/π, and, for p ≥ 2, with Ap = 1 and

Bp = 21/2−1/p

(
Γ

(
p+ 1

2

)/
Γ

(
3

2

))1/p

= (1 + o(1))

√
p

e

(the o(1) term tends to 0 as p tends to infinity). Let X ⊂ L(R,µ) be the image of X ′ under u′.
Observe that u′ is a (2c2/c1)-isomorphism between (X ′, ‖ · ‖1) and (V, ‖ · ‖1). Indeed,

‖u′(x)‖1 ≤ B1‖x‖2 ≤
√

2 · c2‖x‖1/
√
πd,

‖u′(x)‖1 ≥ A1‖x‖2 ≥ c1‖x‖1/
√

2d.

Denote w = (u′)−1. Then ‖u′‖‖w‖ ≤ 2c2/(
√
πc1) < 2c2/c1.

By Theorem C.1, there exists a linear extension u : U → V of u′ to U with ‖u‖ = O(ek(`1, `1))‖u′‖.
We are going to apply Lemma D.1 to maps u and w and get a lower bound on ‖u‖ and, consequently,
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on ek(`1, `1). To do so, we verify that for every f ∈ X, ‖f‖r = O(
√
r). Indeed, if f = u′(x), we

have

‖f‖r ≤ Br‖x‖2 ≤ Br‖f‖1/A1 =

√
2

e
·
√
r · ‖f‖1(1 + o(1)).

Note that ranku ≤ dimU = 2d and dBM (X, `d2) ≤ B1/A1 = 2/
√
π. By Lemma D.1, we have

∆ ≡ 1

(16CdBM (X, `d2)‖w‖‖u‖)2
≤ log2 2d

d
.

Therefore,

‖u‖ ≥ Ω

(√
d

log d

)
1

‖w‖
= Ω

(√
d

log d

)
‖u′‖.

We conclude that

ek(`1, `1) ≥ Ω
(
‖u‖/‖u′‖

)
≥ Ω

(√
d

log d

)
= Ω

( √
log k

log log k

)
.
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