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Abstract

The theory of embeddings of finite metrics has provided
a powerful toolkit for graph partitioning problems in
undirected graphs. The connection comes from the fact
that the integrality gaps of mathematical programming
relaxations for sparsest cut in undirected graphs is ex-
actly equal to the minimum distortion required to em-
bed certain metrics into ℓ1. No analog of this metric em-
bedding theory exists for directed (asymmetric) metrics,
the natural distance functions that arise in considering
mathematical relaxations for directed graph partioning
problems. We initiate a study of metric embeddings for
directed metrics, motivated by understanding directed
variants of sparsest cut.

It turns out that there are two different ways to
formulate sparsest cut in directed graphs (depending on
whether one insists on partitioning the graph into two
pieces or not). Different subclasses of directed metrics
arise in the consideration of mathematical relaxations
for these two formulations and the embedding questions
that result are quite different. Unlike in the undirected
case, where the natural host space is ℓ1, the host space
in the directed case is not obvious and depends on
the problem formulation. Our work is a first step
at understanding this space of directed metrics, the
resulting embedding questions and their relationships
to directed graph partitioning problems.

1 Introduction

Embedding techniques have proved to be quite useful
for rounding LP and SDP relaxations for graph parti-
tioning problems. Our techniques for partitioning di-
rected graphs are still quite weak. While the rich the-
ory of embedding finite metrics into normed spaces (see
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[13, 17]) gives a powerful toolkit for partitioning undi-
rected graphs, no analog of this toolkit exists for di-
rected metrics, the natural asymmetric variant of sym-
metric metrics. Directed metrics arise naturally in con-
sidering LP and SDP relaxations for partitioning di-
rected graphs. In this work, we initiate a study of em-
beddings for such directed metrics.

The close connection between metric embeddings
and partitioning undirected graphs comes from the fact
that the integrality gap of LP and SDP relaxations for
sparsest cut is exactly equal to the minimum distortion
required for embedding certain undirected metrics into
ℓ1. The integrality gap of the natural LP relaxation
for sparsest cut is the same as the minimum distortion
required to embed arbitrary metrics into ℓ1 (as pointed
out by Linial, London and Rabinovich [16]), while the
integrality gap of a certain stronger SDP relaxation is
equal to the distortion required for embedding a class of
metrics called ℓ22 metrics into ℓ1. The former embedding
question was addressed by Bourgain [4]. This latter
embedding question has been the focus of much research
recently [2, 5, 14].

Our investigation of directed metrics and their
embedding questions is motivated by the study of
directed variants of sparsest cut1. It turns out that are
two distinct ways to formulate the sparsest cut problem
for directed graphs. In one formulation, we require that
the graph be partitioned into two pieces while the other
formulation does not have this constraint. The resulting
problems are called Bipartite Directed Sparsest Cut
and Directed Sparsest Cut respectively. (These will be
formally defined later).

We study the classes of directed metrics that arise
in studying natural LP and SDP relaxations for these
directed variants of sparsest cut. The basic classes
of such metrics2 and their inclusions are depicted in
Figure 1. We will define these classes of metrics later.
The integrality gap of a natural LP relaxation for
bipartite directed sparsest cut is equal to the distortion
required for embedding weighted directed metrics into

1Unless otherwise stated, our formulations of sparsest cut will

involve non-uniform demands.
2We will use the terms semimetric and metric interchangeably,

although technically the correct terminology is a semimetric where

0 distances between distinct points are allowed.



directed ℓ1. The corresponding integrality gap question
for a natural SDP relaxation is equal to the distortion
for embedding directed ℓ22 metrics into directed ℓ1.
On the other hand, for directed sparsest cut, the
integrality gap for a natural LP relaxation is equal to the
distortion for embedding directed metrics into directed
0-1 metrics.

directed metrics

directed 0–1 metrics
directed weighted metrics

directed ℓ22 metrics

directed ℓ1 metrics

Figure 1: Classes of Directed Metric Spaces

Our contribution is identifying interesting classes of
directed metrics and connecting embedding questions
here to directed graph partioning problems. We clarify
some of the relationships between these various classes
of directed metrics and show distortion lower bounds
for mappings between them. For Bipartite Directed
Sparsest Cut, we show a strong hardness result of

Ω(2(log n)δ

) assuming that 3-SAT cannot be solved in
subexponential time (and Ω(nδ) assuming a certain
conjecture about refuting random 3-SAT formulae).
The hardness result for the problem with non-uniform
demands is in contrast to the O(

√
log n) approximation

factor that can be achieved for the version with uniform
demands [1]. We also show an Ω(nδ) lower bound for the
related question of embedding directed ℓ22 metrics into
directed ℓ1. This is based on an explicit combinatorial
construction.

We hope that our work will initiate an investiga-
tion of directed metrics and their associated embed-
ding questions. The most interesting open problem here
seems to be to understand how well directed metrics em-
bed into (convex combinations of) directed 0-1 metrics.
As mentioned before, the minimum distortion is exactly
equal to the integrality gap of a natural LP relaxation
for directed sparsest cut. This is known to be O(

√
n) by

the results of Hajiaghayi and Räcke [12], who extended
work of Gupta [10] and Cheriyan, Karloff and Rabani
[6] on Directed Multicut. However the best lower bound
is only Ω(log n) that follows from the undirected case.
The approximability of Directed Sparsest Cut is related
within logarithmic factors to that of Directed Multicut
and both are very interesting open problems.
Organization: In Section 2 we introduce the notion
of directed semimetric, define directed counterparts of
metric spaces ℓp, as well as prove several theorems on

the directed semimetrics. In Section 3 we define the
directed partitioning problems that we study. Then in
Section 4 we show that integrality gaps of an SDP relax-
ation for the Bipartite Directed Sparsest Cut Problem,
and for an LP relaxation for the Directed Sparsest Cut
Problem have natural embedding formulations. In Sec-
tion 5 we show hardness results for Bipartite Directed
Sparsest Cut by reduction from Maximum Edge Bipar-
tite Clique. In Section 6 we show a lower bound of
Ω(nδ) for embedding directed ℓ22 semimetric spaces into
directed ℓ1. Finally, in Section 7 we introduce a notion
of weak embeddability, and prove a directed counterpart
of Bourgain’s theorem for weak embeddings of directed
semimetrics.

2 Definitions and Basic Facts

Definition 2.1. A directed semimetric3 is a set X
with a distance function d : X × X → R

+ ∪ {0} such
that

1. ∀x, y ∈ X d(x, y) ≥ 0.

2. ∀x ∈ X d(x, x) = 0.

3. The triangle inequality holds: ∀x, y, z ∈ V d(x, y)+
d(y, z) ≥ d(x, z).

Definition 2.2. Given a metric space (X, d), and a
point s ∈ X, we define a directed distance dX,s by
dX,s(x, y) = d(x, y) + d(x, s) − d(y, s).

Observe that the set X with the distance dX,s is a
directed semimetric. Indeed,

1. dX,s(x, y) = d(x, y) + d(x, s) − d(y, s) ≥ 0 by the
triangle inequality for the metric d.

2. dX,s(x, x) = d(x, x) + d(x, x) − d(x, x) = 0.

3. dX,s(x, y)+dX,s(y, z) = d(x, y)+d(x, s)−d(y, s)+
d(y, z) + d(y, s) − d(z, s) = [d(x, y) + d(y, z)] +
d(x, s) − d(z, s) ≥ d(x, z) + d(x, s) − d(z, s) =
dX,s(x, z).

Note that for a homogeneous metric space4 X,
directed semimetric spaces (X, dX,s) are isometric for
different choices of s. Therefore we can arbitrarily pick
the point s. Now we can define directed counterparts of
standard (“undirected”) metric spaces.

3Directed semimetrics are sometimes called quasi-semi-

metrics.
4i.e. a space s.t. for every two points x and y there exists an

isometry that maps x to y



Definition 2.3. The directed semimetric ℓp is the
space ℓp with distance function dℓp,0. I.e. the directed
distance between two points x and y equals to

dp(x, y) ≡ dℓp,0(x, y)

= (
∑

i

|xi − yi|p)1/p + (
∑

i

|xi|p)1/p − (
∑

i

|yi|p)1/p.

In particular, for the directed ℓ1, if all coordinates of x
and y are positive, we have d1(x, y) =

∑

i |xi − yi| +
∑

i |xi| −
∑

i |yi| =
∑

i xi
.− yi. (where a .− b ≡

max(a− b, 0)).
Similarly, if X is an ℓ22 space we define a directed

semimetric ℓ22 space as (X, dX,s) (where s ∈ X).

Remark. Our choice of the definition of directed ℓp
spaces was motivated by the following goals: 1) Proper-
ties of directed spaces ℓp should resemble those of undi-
rected spaces ℓp. In particular, ℓp should isometrically
embed into ℓ1 for p ∈ [1, 2] (see below for the definitions,
see also Corollary 2.1). 2) The definition should have
applications to combinatorial problems, as we will show
our definition of ℓ1 and ℓ22 have.

Another important distance is a cut metric. Given
a set X, and a subset S ⊂ X, the cut metric dS defined
as follows: the distance between a point in S and a point
in X \S is 1; the distances between points in S, and the
distances between points in X \ S are 0. Let us pick an
s ∈ S, then we get the following directed distance:

dS,X,s(x, y) = dS(x, y) + dS(x, s) − dS(y, s)

=

{

2, if x ∈ S, y /∈ S;

0, otherwise;

For convenience, we scale this distance by half.

Definition 2.4. Given a set X and a subset S ⊂ X,
the directed cut metric δS(x, y) is

δS(x, y) ≡ 1

2
dS,X,s =

{

1, if x ∈ S, y /∈ S;

0, otherwise;

Definition 2.5. The distortion of an embedding φ of a
directed metric space X to a directed metric Y is equal
to the infimum of D for which there exists a scale c > 0
s.t.

c dX(x1, x2) ≤ dY (φ(x1), φ(x2)) ≤ cD dX(x1, x2).

If no such D exists we say that the distortion is infinite.
We say that X embeds isometrically to Y (or (X is Y -
embeddable) if there exists an embedding of X to Y with
distortion 1.

Note that a convex combination of cut metrics
embeds into ℓ1. First we embed each cut metric into a
one dimensional directed ℓ1 space: we embed S into the
point with the coordinate equal to the weight of the cut
in the convex combination, we embed the complement
of S into 0. Then we concatenate all these embeddings.

Lemma 2.1. Any directed ℓ1-embeddable semimetric d
on a set X is a convex combination of directed cut
metrics.

Proof. We reduce the problem to the well known undi-
rected counterpart of this lemma. Let φ be an isometric
embedding of (X, d) to the directed ℓ1 space. Then

d(x, y) = ‖φ(x) − φ(y)‖1 + ‖φ(x) − 0‖1 − ‖φ(y) − 0‖1.

We know that the ℓ1 norm ‖ · ‖1 restricted to the set
φ(S) ∪ {0} is a convex combination of cut metrics dS :
‖x − y‖1 =

∑

S⊂φ(X) αSdS(x, y) (since the cut metric

for the set S is the same as for the set X \ S, here we
assume that S always does not contain 0). Therefore,
we get

d(x, y) =

=
∑

S⊂φ(X)

αS

(

dS(φ(x), φ(y)) + dS(φ(x), 0) − dS(φ(y), 0)
)

=
∑

S⊂φ(X)

2αSδS(φ(x), φ(y)) =
∑

S⊂X

2αφ−1(S)δS(x, y),

which concludes the proof.

A natural question to ask is: If a metric space
(X, dX) is embeddable into a metric (Y, dY ) with small
distortion, is the corresponding directed semimetric
space (X, dX,s) embeddable into (Y, dY,t) (where s ∈
X, t ∈ Y ) with small distortion?

Lemma 2.2. Suppose a metric space (X, dX) is isomet-
rically embeddable into a metric space (Y, dY ). Let
φ : X →֒ Y be an isometric embedding. Then φ is an
isometric embedding of the corresponding directed semi-
metric space (X, dX,s) into (Y, dY,φ(s)). Hence (X, dX,s)
is isometrically embeddable into (Y, dY,φ(s)).

Proof. We prove that φ is an isometric embedding of
(X, dX,s) into (Y, dY,φ(s)). Indeed, dY,φ(s)(φ(x), φ(y)) =
dY (φ(x), φ(y)) + dY (φ(x), φ(s)) − dY (φ(y), φ(s)) =
dX(x, y) + dX(x, s) − dX(y, s) = dX,s(x, y).

This lemma yields the following result:

Corollary 2.1. For every p ∈ [1, 2], the directed
semimetric space ℓp is directed ℓ1-embeddable. Directed
ℓ1 is directed ℓ22-embeddable.



However, it turns out that the result of Lemma 2.2 is
very fragile: In section 6 we will construct a directed ℓ22
metric that embeds into directed ℓ1 with distortion at
least nδ (where n is the size of the directed ℓ22 space, and
δ > 0 is a constant), but the underlying (undirected) ℓ22
metric space embeds into (undirected) ℓ1 with constant
distortion.

Finally, another class of directed semimetrics, which
we consider, is the class of convex combinations of
directed 0–1 semimetrics, i.e. such semimetrics where
every distance is either 0 or 1. In particular, since
the directed cut metric is a directed 0–1 semimetric,
every directed ℓ1-embeddable semimetric is a convex
combination of directed 0–1 semimetrics. Note, that in
the undirected case the corresponding classes of metrics,
ℓ1-embeddable metrics and convex combinations of 0–1
metrics, coincide. However, in the directed case these
two classes are very different.

Theorem 2.1. The least distortion with which every
convex combination of directed 0–1 semimetrics on n
points can be embedded into directed ℓ1 is Ω(n).

Proof. We construct a directed 0–1 semimetric space
(X, d) not embeddable into directed ℓ1 with distortion
less then Ω(n). Put n = 2k+2. Let X = {s, t, ai, bi|1 ≤
i ≤ k}. The distance function d is defined by:

• for every x ∈ X, d(x, s) = d(t, x) = 0;

• for every i 6= j ∈ {1, . . . , k}, d(bi, aj) = 0;

• all other distances are equal to 1.

It is easy to verify that (X, d) is a directed semi-
metric. Assume that (X, d) embeds into directed ℓ1
with distortion D. Consider the distance d′ induced
by the embedding φ of X into directed ℓ1: d

′(x1, x2) =
d1(φ(x1), φ(x2)), then

c d(x1, x2) ≤ d′(x1, x2) ≤ cD d(x1, x2).

Let us represent d′ a convex combination of directed
cut metrics d′ =

∑
αSδS . Consider a cut5 S that ap-

pears with a non-zero coefficient in this convex combi-
nation. Note that if d(x1, x2) = 0, then d′(x1, x2) = 0,
hence δS(x1, x2) = 0 . From this fact and the definition
of d, we get

• s ∈ S, t /∈ S (since for every x, d(x, s) = d(t, x) =
0);

• if ai /∈ S then bj /∈ S for every j 6= i (since for every
i 6= j, d(bi, aj) = 0);

5S is a proper subset of X

From the first item, we conclude that each cut S con-
tributes αS to the distance between s and t: d′(s, t) =
∑

S αS . From the second item, we conclude that each
cut S contributes to at most one distance between bi
and ai. Indeed, otherwise we would have that for some
i 6= j, ai, aj /∈ S, bi, bj ∈ S, which would contradict to

the second item. Hence,
∑k

i=1 d
′(ai, bi) ≤

∑

S αS .
We obtain

c k = c

k∑

i=1

d(bi, ai) ≤
k∑

i=1

d′(bi, ai) ≤
∑

S

αS

= d′(s, t) ≤ cD d(s, t) = cD.

We conclude that D ≥ k = n−2
2 = Ω(n).

3 Directed Partitioning Problems

In this section we introduce several graph partitioning
problems. In the next section we will show a relation
between these problems and embedding questions.

Let us start with the Directed Sparsest Cut Prob-
lem. There are several non-equivalent ways to extend
the definition of the Directed Sparsest Cut Problem
from the undirected to the directed case. We call the
first variant Bipartite Directed Sparsest Cut.

Definition 3.1. (Bipartite Directed Sparsest Cut)
Let G = (V,E) be a directed graph. We have m source
terminal pairs (sk, tk) (1 ≤ k ≤ m). Each edge
e ∈ E has capacity cape, each source terminal pair has
demand demi. Our goal is to divide the graph into two
parts S and T = V \ S so as to minimize the ratio of
the total capacity of cut edges to the separated demand:

∑

(i,j)∈E
i∈S, j∈T

cap(i,j)

/
∑

k:sk∈S, tk∈T

demk.

A version of this problem with uniform demands
was studied by Leighton and Rao [15], who presented an
O(log n) approximation algorithm, and then by Agar-
wal, Charikar, Makarychev, and Makarychev [1], who
found an O(

√
log n) approximation algorithm. In Sec-

tion 5 we will show that the version of this problem with
non-uniform demands cannot be approximated within

O(2(log n)δ

) or O(nδ) (depending on the complexity as-
sumptions) in polynomial time.

In another variant of Directed Sparsest Cut Prob-
lem we have the same graphG, capacities, and demands,
but our objective function is different.

Definition 3.2. (Directed Sparsest Cut) In this
variant of the problem, our goal is to remove a set of
edges A so as to minimize the ratio of the total capacity



of cut edges to the separated demand:

∑

(i,j)∈A

cap(i,j)

/
∑

k : there is no path
from sk to tk in G − A

demk.

Hajiaghayi and Räcke gave an O(
√
n) approxima-

tion algorithm for this problem [12]. Now we mention
the Directed Multicut Problem, which is closely related
to the Directed Sparsest Cut Problem.

Definition 3.3. (Directed Multicut Problem)
Let G = (V,E) be a directed graph. We have m source
terminal pairs (sk, tk) (1 ≤ k ≤ m). Each edge e ∈ E
has capacity cape. Our goal is to remove a set of edges
of minimal capacity so that every source terminal pair
is separated.

Cheriyan, Karloff, and Rabani gave an O(
√
n logm)

approximation algorithm for this problem [6]. Then
Gupta found an O(

√
n) approximation [10]. It turns out

that given an α approximation for the Directed Multicut
Problem, one can get an α logD approximation for the
Directed Sparsest Cut Problem [11] (where D is the
total demand; without loss of generality we may assume
that D is polynomial in n, hence logD = O(log n));
given an α approximation for the Directed Sparsest
Cut Problem, one can get an O(α log n) approximation
for the Directed Multicut Problem using a divide-and-
conquer approach.

4 Embeddings and Integrality Gaps

4.1 Bipartite Directed Sparsest Cut

Recall that in the undirected case the integrality gap
of an SDP relaxation for the Sparsest Cut with non-
uniform demands is equal to the minimal distortion with
which every ℓ22 space embeds into ℓ1. In this section we
establish a counterpart of this fact for the directed case.

First we state the Directed Sparsest Cut Problem
as follows: Find a directed cut metric d = δS that
minimizes the objective function

(4.1)
∑

(i,j)∈E

cap(i,j) d(i, j)

/
∑

k

demk d(sk, tk).

By Lemma 2.1 any directed ℓ1-embeddable metric is
a convex combination of directed cut metrics. Therefore
if we assume that d is a directed ℓ1 embeddable metric,
the objective function (4.1) will not change.

Now to approximate the directed cut metric it seems
natural to replace the constraint that d is directed ℓ1
embeddable with the constraint that it is a directed
ℓ22 semimetric. Then we obtain the following SDP

relaxation:

min
1

8

∑

(i,j)∈E

cap(i,j) d(i, j)

where d(i, j) = |vi − vj |2 + |vi − v0|2 − |vj − v0|2
∑

k

demk d(sk, tk) = 1

|vi − vk|2 ≤ |vi − vj |2 + |vj − vk|2 ∀ i, j, k ∈ V ∪ {0}
here we assign a vector vi to each vertex i, and we
introduce one additional vector v0. In the intended
solution the vector v0 corresponds to the part T ; and
the vector −v0 corresponds to the part S. In fact in [1]
the same SDP relaxation was used to find an O(

√
log n)

approximation for the Bipartite Directed Sparsest Cut
Problem with uniform demands.

The integrality gap of this SDP is closely connected
to the the minimum distortion achievable for the em-
bedding of a directed ℓ22 semimetric into directed ℓ1.

Theorem 4.1. Denote the integrality gap of the SDP
for the Bipartite Directed Sparsest Cut Problem on the
complete graph on n vertices (for the worst choice of the
demands) by GapBDSC(n). Denote the minimal distor-
tion with which every directed ℓ22 semimetric embeds into
directed ℓ1 by Distortℓ22→ℓ1(n). Then

Distortℓ22→ℓ1(n) = GapBDSC(n).

Proof. The proof is exactly the same as in the undi-
rected case. See Appendix A for the details.

4.2 Directed Sparsest Cut and Directed 0–1
Metrics Consider the following natural LP relaxation
for the Directed Sparsest Cut problem.

min
∑

e∈E

cape xe

∑

k

demk dist(sk, tk) ≥ 1

dist(i, j) + x(j, k) ≥ dist(i, k) ∀i, j, k ∈ V, (j, k) ∈ E

x(i, j) ≥ 0 ∀(i, j) ∈ E

dist(i, j) ≥ 0 ∀i, j ∈ V

We show that the integrality gap of this LP is closely
linked to the minimal distortion.

Theorem 4.2. Denote the integrality gap of the LP for
the Directed Sparsest Cut Problem with non-uniform
Demands on the complete graph on n vertices (for the
worst choice of the demands) by GapDSC(n). Denote
the minimal distortion with which every directed semi-
metric embeds into a convex combination of 0–1 semi-
metrics by Distortany→{0,1}(n). Then

GapDSC(n) = Distortany→{0,1}(n).



Proof. See Appendix A for the proof.

Hajiaghayi and Räcke showed that the LP integral-
ity gap is O(

√
n) [12]. This yields the following corol-

lary.

Corollary 4.1. Every directed semimetric can be em-
bedded into a convex combination of 0–1 semimetrics
with distortion O(

√
n).

5 Hardness of Bipartite Directed Sparsest Cut

In this section we reduce the Maximum Edge Bipartite
Clique Problem to the Directed Sparsest Cut Problem
with non-uniform demands. Recently Feige and Kogan
[8] showed that this problem cannot be approximated

within O(2(log n)δ

) for some δ > 0 in polynomial time

unless 3-SAT can be solved in time 2n3/4+ε

for every
ε > 0. They also conjectured that the problem
cannot be solved for O(nδ) for some δ > 0. The
conjecture was proved in [7] under a stronger complexity
assumption. Therefore, the result of this section implies
that the Directed Sparsest Cut Problem with non-
uniform demands also cannot be approximated within

O(2(log n)δ

) or O(nδ) (depending on the complexity
assumptions) in polynomial time.

Definition 5.1. (Maximum Edge Bipartite
Clique Problem) Given a bipartite graph on
the set of vertices (L,R), find a bipartite clique
(A,B) : A ⊂ L,B ⊂ R that maximizes the value of
|A||B|.

Theorem 5.1. Let G be a bipartite graph on the set
of vertices (L,R). We construct a directed graph H as
follows. The set of vertices of H is L∪R∪{s, t} (where
s and t are two new vertices). Every pair of vertices
l ∈ L and r ∈ R non-adjacent in G are connected with
an edge of infinite (or sufficiently large) capacity in H.
All vertices are connected to s with an edge of infinite
capacity; t is connected to all vertices with an edge of
infinite capacity; s is connected to t with an edge of
capacity 1. There are no other edges in H. The demand
between every l ∈ L and every r ∈ R is 1, all other
demands are 0.

Denote the optimum value of the Bipartite Directed
Sparsest Cut Problem on the graph H by OPTBDSC ,
and the optimum value of the Maximum Edge Bipar-
tite Clique Problem by OPTMBC . Then OPTMBC =
OPT−1

BDSC .

Proof. First, let us prove that OPTMBC ≤ OPT−1
BDSC .

Consider an optimum bipartite clique (A,B) : A ⊂

L,B ⊂ R. Let

S = {s} ∪A ∪ (R \B)

T = {t} ∪B ∪ (L \A)

Compute the ratio of the cut capacity to the separated
demand. The only cut edge is (s, t). The cut separates
all pairs of vertices (a, b) : a ∈ A, b ∈ B. Therefore
the ratio is 1

|A||B| = 1/OPTMBC . We conclude that

OPTMBC ≤ OPT−1
BDSC .

Now we prove the other direction: OPTMBC ≥
OPT−1

BDSC . Let (S, T ≡ S̄) be an optimum directed
balanced cut. Since the capacity of the cut is finite no
edge of infinite capacity is cut, this means that

• s ∈ S, and t ∈ T ;

• for every vertices a ∈ S ∩L and b ∈ T ∩R, (a, b) is
not an edge of H, i.e. (a, b) is an edge in the graph
G.

The first item implies that the capacity of the cut is 1.
Therefore the separated demand equals 1/OPTBDSC =
|S∩L|×|T∩R|. The second item implies that (S∩L, T∩
R) is a bipartite clique. We have found a bipartite clique
with 1/OPTBDSC edges. This concludes the proof.

6 Lower bound for embedding directed ℓ
2
2

metrics into directed ℓ1

In this section we show that the integrality gap of an
SDP relaxation for the Maximum Edge Bipartite Clique
Problem is Ω(nδ). What is a natural SDP relaxation for
the problem? We can apply the reduction of Theorem
5.1 to the SDP relaxation for the Bipartite Directed
Sparsest Cut, and obtain an SDP relaxation for the
Maximum Edge Bipartite Clique:

min
8

d(s, t)

d(i, s) = 0 since edge (i, s) of H has infinite capacity;

d(t, i) = 0 since edge (t, i) of H has infinite capacity;

d(l, r) = 0 ∀ l ∈ L, r ∈ R, l is not connected to r in G;
∑

l∈L,r∈R

d(l, r) = 1

Now we throw in additional constraints (note that
the SDP becomes stronger): we require that vs = −v0,
vt = v0, |vi| = |v0|. We also require that not only
vectors vi but all vectors ±vi satisfy triangle inequalities
w.r.t. the squared Euclidean distance. Finally we
rescale the vectors so that all the vectors are unit



vectors, and put al = vl for l ∈ L, and br = −vr for
r ∈ R.

We get the following nice SDP relaxation for the
Maximum Edge Bipartite Clique Problem:

maximize
1

4

∑

ij

〈v0 − ai, v0 − bj〉

〈v0 − ai, v0 − bj〉 = 0 if i is not connected to j

vectors ±v0, ±ai, and ±bj are unit vectors sat-
isfying triangle inequalities w.r.t the squared
Euclidean distance.

In the intended solution ai = −v0 if i belongs to
the bipartite clique, and ai = v0, otherwise. Similarly,
bj = −v0 if j belongs to the bipartite clique, and bj = v0,
otherwise. We prove that the integrality gap of this
relaxation is nδ for some δ > 0.

Construction 6.1. Consider the following instance
of the Maximum Edge Bipartite Clique Problem. Let
C be the set of vertices of the d-dimensional hypercube
{± 1√

d
}d that have an even number of entries equal to

1√
d
. Let G be a bipartite graph on (L,R) = (C,C); two

vertices l ∈ L and r ∈ R are connected if 〈l, r〉 6= −γ,
where γ ∈ (0, 1) is a fixed constant.

Lemma 6.1. Let γ = γ(d) be a number in the interval
(0, γ0), γ0 < 1, s.t. −γ is the inner product of some
vectors from C (i.e. γ is of the form d−4r

d ). Then
the number of edges in the maximum bipartite clique
(L∗, R∗) of G is at most (2 − ε)2d (for some constant
ǫ > 0 that depends only on γ0).

Proof. This is an easy consequence of one of the results
of Frankl and Rödl [9, Theorem 1.4]. See Appendix B
for the proof.

Theorem 6.1. The value of the SDP solution of the
problem is Ω(4d).

Proof. Let α = 2γ2

(1+γ)2 (it will become clear later why

we chose α this way; for now you may think of α as an
arbitrary constant between 0 and 2/3).

Let

G(u) =

√

2α− α2

1 + 2γ

[√

2γu⊕ u⊗ u
]

.

Define a feasible SDP solution by

ai = bi = F (u) ≡ (1 − α)v0 ⊕G(u).

where ai and bi are vectors corresponding to the vertex
u ∈ C. Now we verify that vectors from the set

S ≡ {ai, bi} form a feasible solution. They are unit

vectors: ‖(1 − α)v0 ⊕
√

2α−α2

1+2γ

[√
2γu⊕ u⊗ u

]
‖2
2 =

(1 − α)2 + 2α−α2

1+2γ (1 + 2γ) = 1.
We will need the following inequality below

〈v0 − F (u), v0 − F (v)〉 ≥ 0.(6.2)

Indeed, we have 〈v0 − F (u), v0 − F (v)〉 = α2 +
2α−α2

1+2γ

[
2γ〈u, v〉 + 〈u, v〉2

]
≥ α2 + 2α−α2

1+2γ

[
−γ2

]
=

α

[

2γ2

(1+γ)2 −
2− 2γ2

(1+γ)2

1+2γ γ2

]

= 0.

Moreover, if 〈u, v〉 = −γ, then the inequality above
becomes an equality. The latter fact actually implies
that the first SDP constraint is satisfied.

Now we verify that vectors satisfy triangle inequali-
ties w.r.t. the squared Euclidean distance. Clearly, ver-
tices {±G(u)} satisfy triangle inequalities, since they
are vertices of a multidimensional parallelepiped. So all
the vertices from S satisfy triangle inequalities. There-
fore, we have to consider the following cases (we omit
the cases that can be obtained from the cases below by
reflection in the origin):

1) one of the vertices is v0; two others are in S;
2) one of the vertices is v0; two others are in −S;
3) two of the vertices are v0 and −v0, and the third

is in S;
4) one of the vertices is v0; the second is in S, and

the third is in −S;
5) two of the vertices are in S, and the third is in

−S.

Lemma 6.2. Triangle inequality is satisfied in all the
cases above.

Proof.
1) Obviously the triangle with these three vertices is

isosceles. From inequality (6.2) we know that the angle
at the vertex v0 is not obtuse.

2) Similarly, the triangle with these three vertices
is isosceles. The angle at the vertex v0 is clearly acute.

3) The triangle with these vertices is a right triangle.
Therefore all its angles are not obtuse.

4) Let the vertices be v0, F (u), and −F (v) corre-
spondingly. In the triangle with vertices v0, F (u), and
−F (v), the side from v0 to F (u) is shorter than the side
from v0 to −F (v). Hence the angle at the vertex −F (v)
is smaller that one at the vertex F (u). It suffices to
check that angles at the vertices v0 and F (u) are not
obtuse. We have,

〈v0 − F (u), v0 + F (v)〉 = α(2 − α) − 〈G(u), G(v)〉
︸ ︷︷ ︸

is maximal when u = v

≥ α(2 − α) − (1 − (1 − α)2) = 0



The other angle is not obtuse as well: 〈F (u)−v0, F (u)+
F (v)〉 = 〈F (u)− v0, F (u)+ v0〉+ 〈F (u)− v0, F (v)− v0〉.
The first term in the RHS is equal to zero, the second
term is non-negative by inequality (6.2).

5) Let the vertices be F (u), F (v), and −F (w)
correspondingly. We have

〈F (u)−F (v), F (u)+F (w)〉 = 〈G(u)−G(v), G(u)+G(w)〉

We know that vectors {±G(x)} satisfy triangle inequal-
ities. So the RHS is non-negative. Now consider the
last remaining case:

〈F (u) + F (w), F (v) + F (w)〉 = 1 + 〈F (u), F (w)〉 +

〈F (v), F (w)〉 + 〈F (u), F (v)〉 ≥ 1 + 3 min
x,y∈C

〈F (x), F (y)〉

= 1 + 3 min
x,y∈C

(〈v0 − F (x), v0 − F (y)〉 − α2 + (1 − α)2)

= 4 − 6α

Here we use that minx,y∈C〈v0−F (x), v0−F (y)〉 ≥ 0 by
inequality (6.2). Since α < 2/3, the quantity 4 − 6α is
positive.

We have shown that our solution is a feasible
solution of the SDP.

Finally let us estimate the value of the objective
function. For two random vertices u, and v from C we
have: E[〈v0−F (u), v0−F (v)〉] = α2+E[〈G(u), G(v)〉] >
α2. Therefore the value of the objective function is at
least α2|C|2 = α222d−2

We have shown that the integrality gap of the
SDP relaxation for the Maximum Edge Bipartite Clique
Problem is Ω(nδ). This implies that the integrality
gap of the SDP relaxation for the Bipartite Directed
Sparsest Cut Problem is at least Ω(nδ), and therefore
the least distortion Distortℓ22→ℓ1(n) for the embedding

of a directed ℓ22-semimetric into directed ℓ1 is at least
Ω(nδ).

7 Weak Embeddings

In this section we introduce a new notion of weak
embeddability, and prove a directed counterpart of
Bourgain’s theorem for directed semimetrics.

Definition 7.1. We say that a mapping φ from a di-
rected semimetric space (X, dX) to a directed semimet-
ric space (Y, dY ) is a weak embedding with distortion D
if there is a scale factor c > 0 s.t. for every x, y ∈ X
we have

• if dX(x, y) ≥ dX(y, x) then c
D dX(x, y) ≤

dY (φ(x), φ(y)) ≤ c dX(x, y);

• if dX(x, y) ≤ dX(y, x) then dY (φ(x), φ(y)) ≤
c dX(x, y).

We say that a directed semimetric space (X, dX)
is weakly embeddable to a directed semimetric space
(Y, dY ) with distortion D, if there exists a weak em-
bedding with distortion D.

Definition 7.2. A directed semimetric space (X, d) is
a weighted directed semimetric space if there exists a
weight function w : X → R s.t. d(x, y) = d∗(x, y) +
w(x)−w(y), where d∗(x, y) is a (undirected) semimetric.

This definition is a slight generalization of Definition
2.2. In Definition 2.2 we only consider weight functions
w(x) of the form d(x, s). The following theorem by
Vitolo [18] gives an alternative characterization.

Theorem 7.1. (Vitolo) Let (X, d) be a directed
semimetric space. The following two conditions are
equivalent: 1) (X, d) is a weighted directed semimetric
space; 2) for every x, y, and z we have d(x, y)+d(y, z)+
d(z, x) = d(x, z) + d(z, y) + d(y, x).

Now we are ready to state our embedding result.

Theorem 7.2. Every weighted directed semimetric
(X, d) on n points weakly embeds into directed ℓ1 with
distortion at most O(log n).

The proof of this theorem is given in Appendix C.
Remark. The condition that (X, d) is weighted is im-
portant. Indeed, any weak embedding of a directed 0–1
semimetric with distortion D is also a (regular) embed-
ding with the same distortion. Therefore, the directed
0–1 semimetric presented in the proof of Theorem 2.1
does not embed into directed ℓ1 with distortion less than
Ω(n).
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A Proof of Theorems 4.1 and 4.2

We will prove a general theorem that implies Theorems
4.1 and 4.2.

Let A and B be two closed convex cones of semi-

metrics on a set X. Denote the minimum distortion D
with which every semimetric dA ∈ A can be approxi-
mated by a semimetric dB ∈ B by DistortA→B, i.e. the
least D s.t. ∀ dA ∈ A ∃dB ∈ B dB(x, y) ≤ dA(x, y) ≤
DdB(x, y).

Given an instance I of the Sparsest Cut Problem:
graph G = (X,E) with edge capacities cape, and
demands demi, we define the optimum value OPTC(I)
of the problem in the class of semimetrics C, as

OPTC(I) = min
d∈C

∑

(x,y)∈E cap(x,y) d(x, y)
∑

i demi d(si, ti)
.

Then the gap between two classes A and B is defined as

GapA,B = sup
I is an instance on X

OPTB(I)

OPTA(I)
.

Theorem A.1. For two closed cones of semimetrics A,
B on a set X, we have the identity DistortA→B =
GapA,B.

Remark. This theorem applied to the cone of directed
ℓ22 semimetrics and the cone of directed ℓ1 embeddable
semimetrics yields Theorem 4.1; applied to the cone of
all semimetrics and the cone generated by directed 0–1
semimetric yields Theorem 4.2.

Proof. [Proof of Theorem A.1]
The distortion DistortA→B is equal to the maxi-

mum over all dA ∈ A of the value of the following LP:

min D

dB ∈ B
DdA(x, y) − dB(x, y) ≥ 0 ∀x, y ∈ X

dB(x, y) ≥ dA(x, y) ∀x, y ∈ X

minimization is over variables dB , and D

The value of this LP equals the value of the dual LP:

max
∑

x,y

βx,ydA(x, y)

−
∑

x,y

αx,yd(x, y) + βx,yd(x, y) ≤ 0 ∀ d ∈ B

∑

x,y

αx,ydA(x, y) ≤ 1

(minimization is over variables αx,y, and βx,y)



We get, that DistortA→B equals

max
dA∈A

max
αx,y

βx,y

( ∑
βx,ydA(x, y)

∑
αx,ydA(x, y)

/

max
dB∈B

∑
βx,ydB(x, y)

∑
αx,ydB(x, y)

)

= max
αx,y

βx,y

(

max
dA∈A

∑
βx,ydA(x, y)

∑
αx,ydA(x, y)

/

max
dB∈B

∑
βx,ydB(x, y)

∑
αx,ydB(x, y)

)

= max
αx,y

βx,y

(

min
dB∈B

∑
αx,ydB(x, y)

∑
βx,ydB(x, y)

/

min
dA∈A

∑
αx,ydA(x, y)

∑
βx,ydA(x, y)

)

(all the summations are over x and y)
Now we interpret values of αx,y as capacities, and
values of βx,y as demands, and get the statement of
the theorem.

B Proof of Lemma 6.1

Lemma 6.1 Let γ = γ(d) be a number in the interval
(0, γ0), γ0 < 1, s.t. −γ is the inner product of some
vectors from C (i.e. γ is of the form d−4r

d ). Then
the number of edges in the maximum bipartite clique
(L∗, R∗) of G is at most (2 − ε)2d (for some constant
ǫ > 0 that depends only on γ0).

Proof. This is an easy consequence of one of the results
of Frankl and Rödl [9, Theorem 1.4]:

Theorem B.1. (Frankl and Rödl) Suppose 0 <
η < 1

4 and two families F ,G ⊂ 2X are given which sat-
isfy |F ∩G| 6= l for F ∈ F , G ∈ G. If ηd ≤ l ≤ ( 1

2 −η)d,
then

|F| |G| ≤ (4 − ε(η))d

where ε(η) is a positive constant depending only on η.

Now we proceed along the lines of the proof of [9,
Theorem 1.11]. Let X = {1, . . . , d}; η = 1−γ0

8 . We
prove that |L∗||R∗| ≤ d2(4 − ε(η))d (obviously this
easily implies the statement of the theorem). Choose
1 < α ≤ d for which the set

Lα = {u ∈ L∗|u has exactly α entries equal to
1√
d
}

has maximal size. Likewise choose 1 < β ≤ d for which
the set

Rβ = {v ∈ R∗|v has exactly β entries equal to
1√
d
}

has maximal size. Then |Lα| ≥ |L∗|/d, |Rα| ≥
|R∗|/d. Now, if |Lα| < (2 − ε(η)/2)d, then |L∗||R∗| <
d2|Lα||Rβ | < d2(2−ε(η)/2)d ·2d = d2(4−ε(η))d, and we
are done. So below we assume that |Lα| ≥ (2−ε(η)/2)d,
and similarly |Rβ | ≥ (2 − ε(η)/2)d. Therefore, α =
d
2 + o(d), β = d

2 + o(d).

Now we are ready to apply Theorem B.1. Pick

l = α+β
2 − d(γ+1)

4 = 1−γ
4 d+ o(d). Clearly the condition

of Theorem B.1 holds (for sufficiently large d):

(
1

2
− η)d >

3

8
d > l =

1 − γ

4
d+ o(d) > ηd.

Define sets F and G as follows: F = {F = {i : ui =
1√
d
} |u ∈ Lα}; G = {G = {i : vi = 1√

d
} |v ∈ Rβ}. Pick

u ∈ Lα, v ∈ Rβ . Now consider the corresponding sets
F and G. We have

〈u, v〉 =
d− 2|F△G|

d
=
d− 2(α+ β − 2|F ∩G|)

d
.

Since (L∗, R∗) is a bipartite clique, u and v are adjacent
in G. Hence 〈u, v〉 6= −γ. Therefore,

|F∩G| =
α+ β

2
+
d(〈u, v〉 − 1)

4
6= α+ β

2
− d(γ + 1)

4
= l.

By Theorem B.1, |F||G| < (4 − ε(η))d. Therefore,

|L∗| |R∗| ≤ d2|Lα| |Rβ | = d2|F| |G| < d2(4 − ε(η))d,

which concludes the proof.

C Proof of Theorem 7.2

Theorem 7.2. Every weighted directed semimetric
(X, d) on n points weakly embeds into directed ℓ1 with
distortion at most O(log n).

Proof. We use the following form of Bourgain’s theorem.

Theorem C.1. (Bourgain [4]) For any semimetric
space (Y, dY ) on n points there exists an embedding
φ : y 7→ (φ1(y), . . . , φK(y)) of Y into ℓK1 with distortion
D = O(log n), where K = Θ((log n)2) s.t.

• |φi(y1) − φi(y2)| ≤ dY (y1, y2);

• ‖φ(y1)−φ(y2)‖1 ≥ c log n dY (y1, y2) for some fixed
constant c > 0.

We represent the weighted directed semimetric d as
d(x, y) = d∗(x, y) + w(x) − w(y). And then we apply
Bourgain’s theorem to the semimetric space (X, d∗),
and get the embedding φ. Define a new embedding
ψ : X →֒ ℓ2K

1 by ψi(x) = φi(x) + w(x) for 1 ≤ i ≤ K;
ψi(x) = −φi−K(x)+w(x) for K +1 ≤ i ≤ 2K (here for
each dimension i of the original embedding we introduce
two dimensions i and i+K to the new embedding). Note
that adding a constant to the weight function w(x) does
not change the semimetric d, so we assume that w(x)
is chosen s.t. all coordinates ψi(x) are positive. Let us
estimate the distortion of ψ. Observe, that ψi(x1)

.−
ψi(x2) ≤ max(|φi(x1) − φi(x2)| + w(x1) − w(x2), 0) ≤



d∗(x1, x2) + w(x1) − w(x2) = d(x1, x2), for 1 ≤ i ≤ K;
the same bound holds for i > K. Therefore, the directed
ℓ1 distance between ψ(x1) and ψ(x2) is bounded by

d1(ψ(x1), ψ(x2)) = 2
2K∑

i=1

ψi(x1)
.− ψi(x2) ≤ 4K·d(x1, x2).

Now if d(x1, x2) ≥ d(x2, x1), that is w(x1) ≥ w(x2), we
have

(ψi(x1)
.− ψi(x2)) + (ψi+K(x1)

.− ψi+K(x2))

≥
(
(φi(x1) + w(x1))

.− (φi(x2) + w(x2))
)

+
(
(−φi(x1) + w(x1))

.− (−φi(x2) + w(x2))
)

assuming φi(x1) ≥ φi(x2) (the other case is similar)

≥ (φi(x1) + w(x1)) − (φi(x2) + w(x2))

= |φi(x1) − φi(x2)| + w(x1) − w(x2).

Finally, we have d1(ψ(x1), ψ(x2))

= 2
∑K

i=1

(

(ψi(x1)
.− ψi(x2)) + (ψi+K(x1)

.−

ψi+K(x2))
)

≥ 2
∑K

i=1

(

|φi(x1) − φi(x2)| + w(x1) −

w(x2)
)

≥ 2c log n d∗(x1, x2) + 2K(w(x1) − w(x2)) ≥
2c log n d(x1, x2).

We have showed that if d(x1, x2) ≥ d(x2, x1),
then 2c log n d(x1, x2) ≤ d1(ψ(x1), ψ(x2)) ≤ 4K ·
d(x, y); if d(x1, x2) ≥ d(x2, x1), then d1(ψ(x1), ψ(x2)) ≤
4K · d(x, y). Therefore, ψ is a weak embedding with
distortion at most 4K

2c log n = O(log n).


