
Approximation Algorithms for Unique Games
via Orthogonal Separators

Lecture notes by Konstantin Makarychev.
Lecture notes are based on the papers [CMM06a, CMM06b, LM14].

1 Unique Games

In these lecture notes, we define the Unique Games problem and describe an approximation algorithm for it.

Definition 1.1 (Unique Games). Given a constraint graph G = (V,E) and a set of permutations πuv on
[k] = {1, . . . , k} (for all edges (u, v)), assign a value (label) xu from the set of labels [k] = {1, . . . , k} to
each vertex u so as to satisfy the maximum number of constraints of the form πuv(xu) = xv.

Observe that if the instance is completely satisfiable, then it is very easy to find a solution that satisfies
all constraints: We simply need to guess the label for one vertex, and then propagate the values to all other
vertices in the graph. However, even if a very small fraction of all constraints is violated, then it is very
hard to find a good solution. Khot [Kho02] conjectured that if the optimal solution satisfies 99% of all
constraints, then it is NP-hard to find a solution satisfying even a 1% of all constraints. The conjecture is
known as Khot’s Unique Games conjecture. We state it formally below.

Definition 1.2 (Unique Games Conjecture [Kho02]). For every positive ε and δ, there exists a k such that
given an instance of Unique Games with k labels, it is NP-hard to distinguish between the following two
cases:

• There exists a solution satisfying (1− ε) fraction of all constraints.

• Every assignment satisfies at most δ fraction of all constraints.

It is unknown whether the conjecture is true or false. The best approximation algorithms for Unique
Games find solutions satisfying 1−O(

√
ε log k) and 1−O(ε

√
log n log k) fraction of all constraints, if the

optimal solution satisfies 1− ε fraction of all constraints.

Theorem 1.3 (Charikar, Makarychev, Makarychev [CMM06a]). There exists an approximation algorithm
that given a Unique Games instance satisfying (1− ε) fraction of all constraints, finds a solution satisfying
1−O(

√
ε log k) fraction of all constraints.

Theorem 1.4 (Chlamtáč, Makarychev, Makarychev [CMM06b]). There exists an approximation algorithm
that given a Unique Games instance satisfying (1− ε) fraction of all constraints, finds a solution satisfying
1−O(ε

√
log n log k) fraction of all constraints.

Note that the approximation of Theorem 1.3 cannot be improved assuming the Unique Games conjecture
is true [KKMO07]. We prove Theorem 1.3 using the technique of orthogonal separators from [CMM06b].
Below, we denote the number of violated constraints by OPT . We assume that OPT ≤ ε|E|, and show
how to find a solution violating at most O(

√
ε log k) |E| constraints.

In the next section, we present a standard SDP relaxation for Unique Games (without `22 triangle inequali-
ties). Then, in Section 3, we introduce a technique of orthogonal separators. However, we postpone the proof
of existence of orthogonal separators to Section 5. In Section 4, we present the approximation algorithm and
prove Theorem 1.3. Finally, in Section 6, we give some useful bounds on the Gaussian distribution.
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2 SDP Relaxation

In the SDP relaxation, we have a vector ūi for every vertex u ∈ V and label i ∈ [k]. In the intended integral
solution, the vector ūi is the indicator of the event “the vertex u has the label i”. That is, if x∗u is the optimal
labeling, then the corresponding integral solution is as follows:

ū∗i =

{
1, if x∗u = i;

0, otherwise.

Observe that if a constraint (u, v) is satisfied then ū∗i = v̄∗πuv(i) for all i. If the constraint is violated, then
ū∗i = v̄∗πuv(i) = 0 for all but exactly two i’s: ū∗xu = 1, but v̄∗πuv(xu) = 0; and v̄∗xv = 1, but ū∗

π−1
uv (xv)

= 0.
Thus,

1

2

∑
i∈[k]

‖ū∗i − v̄∗πuv(i)‖
2 =

{
0, if assignment x∗u satisfies constraint (u, v);

1, if assignment x∗u violates constraint (u, v).

Therefore, the number of violated constraints equals

1

2

∑
(u,v)∈E

∑
i∈[k]

‖ū∗i − v̄∗πuv(i)‖
2. (1)

Our goal is to minimize this expression. Note that for a fixed vertex u, one and only one ū∗i equals 1. Hence,

• 〈ū∗i , ū∗j 〉 = 0, if i 6= j; and

•
∑

i ‖ū∗i ‖2 = 1.

We now write the SDP relaxation.

min
1

2

∑
(u,v)∈E

∑
i∈[k]

‖ūi − v̄πuv(i)‖
2

〈ūi, ūj〉 = 0 for all u ∈ V and i 6= j∑
i∈[k]

‖ūi‖2 = 1 for all u ∈ V

This is a relaxation, since for ūi = ū∗i , the SDP value equals the number of violated constraints (see (1));
and ū∗i is a feasible solution for the SDP. Usually, such relaxations contain an extra constraints – the `22
triangle inequality. But we will note use it here.

3 Orthogonal Separators – Overview

Let X be a set of vectors in `2 of length at most 1. We say that a distribution over subsets of X is an m-
orthogonal separator of X with `2 distortion D, probability scale α > 0 and separation threshold β < 1, if
the following conditions hold for S ⊂ X chosen according to this distribution:

1. For all ū ∈ X , Pr(ū ∈ S) = α‖ū‖2.

2



2. For all ū, v̄ ∈ X with 〈ū, v̄〉 ≤ βmax(‖ū‖2, ‖v̄‖2),

Pr(ū ∈ S and v̄ ∈ S) ≤ αmin(‖ū‖2, ‖v̄‖2)
m

.

3. For all ū, v̄ ∈ X ,

Pr(IS(ū) 6= IS(v̄)) ≤ αD‖ū− v̄‖ ·min(‖ū‖, ‖v̄‖) + α
∣∣‖ū‖2 − ‖v̄‖2∣∣,

where IS is the indicator of the set S i.e. IS(ū) = 1, if ū ∈ S; IS(ū) = 0, if ū /∈ S.

In most cases, it is convenient to use a slightly weaker (but simpler) bound on Pr(IS(ū) 6= IS(v̄)).

3′. For all ū, v̄ ∈ X ,
Pr(IS(ū) 6= IS(v̄)) ≤ αD‖ū− v̄‖ ·max(‖ū‖, ‖v̄‖),

The property (3′) follows from (3), since∣∣‖ū‖2 − ‖v̄‖2∣∣ =
∣∣‖ū‖ − ‖v̄‖∣∣ · (‖ū‖+ ‖v̄‖) ≤ ‖ū− v̄‖ · 2 max(‖ū‖, ‖v̄‖).

The last inequality follows from the (regular) triangle inequality for vectors ū, v̄ and (ū− v̄).
Our algorithm for Unique Games relies on the following theorem.

Theorem 3.1 (Chlamtac, Makarychev, Makarychev [CMM06b]). There exists a polynomial-time random-
ized algorithm that given a set of vectors X in the unit ball and parameter m, generates a m-orthogonal
separator with `2 distortion D = O

(√
logm

)
, probability scale α ≥ poly(1/m) and separation threshold

β = 0.

4 Approximation Algorithm

We are now ready to present the approximation algorithm.

Input: An instance of Unique Games.
Output: Assignment of labels to vertices.

1. Solve the SDP. Let X = {ūi : u ∈ V, i ∈ [k]}.

2. Mark all vertices as unprocessed.

3. while (there are unprocessed vertices)

(a) Produce an m-orthogonal separator S ⊂ X with distortion D and probability scale α as in
Theorem 3.1, where m = 4k and D = O(

√
log n logm).

(b) For all unprocessed vertices u :

• Let Su = {i : ui ∈ S} .
• If Su contains exactly one element i, then assign the label i to u, and mark the vertex u as

processed.

4. If the algorithm performs more than n/α iterations, assign arbitrary values to any remaining vertices
(note that α ≥ 1/poly(k)).
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Lemma 4.1. The algorithm satisfies the constraint between vertices u and v with probability 1−O(D
√
εuv),

where εuv is the SDP contribution of the term corresponding to the edge (u, v):

εuv =
1

2

k∑
i=1

‖ūi − v̄πuv(i)‖
2.

Proof. If D
√
εuv ≥ 1/8, then the statement holds trivially, so we assume that D

√
εuv < 1/8. For the sake

of analysis we also assume that πuv is the identity permutation (we can just rename the labels of the vertex
v, this clearly does not affect the execution of the algorithm).

At the end of an iteration in which one of the vertices u or v assigned a value we mark the constraint as
satisfied or not: the constraint is satisfied, if the the same label i is assigned to the vertices u and v; otherwise,
the constraint is not satisfied (here we conservatively count the number of satisfied constraints: a constraint
marked as not satisfied in the analysis may potentially be satisfied in the future).

Consider one iteration of the algorithm. There are three possible cases:

1. Both sets Su and Sv are equal and contain only one element, then the constraint is satisfied.

2. The sets Su and Sv are equal, but contain more than one or none elements, then no values are assigned
at this iteration to u and v.

3. The sets Su and Sv are not equal, then the constraint is not satisfied (a conservative assumption).

Let us estimate the probabilities of each of these events. Using the fact that for all i 6= j the vectors ūi
and ūj are orthogonal, and the first and second properties of orthogonal separators we get (below α is the
probability scale): for a fixed i,

Pr (|Su| = 1; i ∈ Su) = Pr (i ∈ Su)− Pr (i ∈ Su and j ∈ Su for some j 6= i)

≥ Pr (i ∈ Su)−
∑
j∈[k]
j 6=i

Pr (i, j ∈ Su)

≥ α‖ūi‖2 −
∑
j∈[k]
j 6=i

αmin(‖ūi‖2, ‖ūj‖2)
4k

≥ α‖ūi‖2 −
α

4k

∑
j∈[k]
j 6=i

‖ūj‖2

≥ α‖ūi‖2 −
α

4k
.

Here we used that
∑

j∈[k] ‖ūj‖2 = 1. Then,

Pr (|Su| = 1) =
∑
i∈[k]

Pr (|Su| = 1; i ∈ Su) ≥
∑
i∈[k]

[
α‖ūi‖2 −

α

4k

]
≥ 3/4α.

The probability that the constraint is not satisfied is at most

Pr (Su 6= Sv) ≤
∑
i∈[k]

Pr (IS(ui) 6= IS(vi)) .

By the third property of orthogonal separators (see property (3′)):

Pr (Su 6= Sv) ≤ αD
∑
i∈[k]

‖ūi − v̄i‖ ·max(‖ūi‖, ‖v̄i‖).

4



By Cauchy-Schwarz,

Pr (Su 6= Sv) ≤ αD
√∑
i∈[k]

‖ūi − v̄i‖2 ·
√∑
i∈[k]

max(‖ūi‖2, ‖v̄i‖2)

≤ αD
√∑
i∈[k]

2εuv ·
√∑
i∈[k]

‖ūi‖2 + ‖v̄i‖2

︸ ︷︷ ︸
=
√
2

= 2αD
√
εuv.

Finally, the probability of satisfying the constraint is at least

Pr (|Su| = 1 and Su = Sv) ≥
3

4
α− 2αD

√
εuv ≥

1

2
α.

Since the algorithm performs n/α iterations, the probability that it does not assign any value to u or v
before step 4 is exponentially small. At each iteration the probability of failure is at most O(D

√
εuv) times

the probability of success, thus the probability that the constraint is not satisfied is O(D
√
εuv).

We now show that the approximation algorithm satisfies 1−O(
√
ε log k) fraction of all constraints.

Proof of Theorem 1.3. By Lemma 4.1, the expected number of unsatisfied constraints is equal to∑
(u,v)∈E

O(
√
εuv log k).

By Jensen’s inequality for the function t 7→
√
t,

1

|E|
∑

(u,v)∈E

√
εuv log k ≤

√√√√ 1

|E|
∑

(u,v)∈E

εuv log k =

√
SDP

|E|
log k.

Here, SDP =
∑

(u,v)∈E εuv denotes the SDP value. If OPT ≤ ε|E|, then SDP ≤ OPT ≤ ε|E|. Hence,
the expected cost of solution is upper bounded by O(

√
ε log k)|E|.

5 Orthogonal Separators – Proofs

Proof of Theorem 3.1. In the proof, we denote the probability that a GaussianN (0, 1) random variable X is
greater than a threshold t by Φ̄(t). We use the following algorithm for generating m-orthogonal separators
with `2 distortion: Assume w.l.o.g. that all vectors ū lie in Rn. Fix m′ = m and t = Φ̄−1(1/m′) (i.e., fix
t such that Φ̄(t) = 1/m′). Sample independently a random Gaussian n dimensional vector g ∼ N (0, I) in
Rn and a random number r in [0, 1]. Return the set

S = {ū : 〈ū, g〉 ≥ t‖ū‖ and ‖ū‖2 ≥ r}.

We claim that S is anm-orthogonal separator with `2 distortionO(
√

logm), probability scale α = 1/m′

and β = 0. Let us verify that S satisfies the required conditions.

1. For every nonzero vector ū ∈ X , we have

Pr(ū ∈ S) = Pr(〈ū, g〉 ≥ t‖ū‖ and r ≤ ‖ū‖2)
= Pr(〈ū/‖ū‖, g〉 ≥ t) · Pr(r ≤ ‖ū‖2)
= ‖ū‖2/m′ ≡ α‖ū‖2.
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Here we used that 〈ū/‖ū‖, g〉 is distributed as N (0, 1), since ū/‖ū‖ is a unit vector. If ū = 0, then Pr(r ≤
‖ū‖2) = 0, hence Pr(ū ∈ S) = 0.

2. For every ū, v̄ ∈ X with 〈ū, v̄〉 = 0, we have

Pr(ū, v̄ ∈ S) = Pr(〈ū, g〉 ≥ t; 〈v̄, g〉 ≥ t; r ≤ ‖ū‖2 and r ≤ ‖v̄‖2)
= Pr(〈ū, g〉 ≥ t‖ū‖ and 〈v̄, g〉 ≥ t‖v̄‖) · Pr(r ≤ min(‖ū‖2, ‖v̄‖2)).

The random variables 〈ū, g〉 and 〈v̄, g〉 are independent, since ū and v̄ are orthogonal vectors. Hence,

Pr(ū, v̄ ∈ S) = Pr(〈ū, g〉 ≥ t‖ū‖) · Pr(〈v̄, g〉 ≥ t‖v̄‖) · Pr(r ≤ min(‖ū‖2, ‖v̄‖2)).

Note that ū/‖ū‖ is a unit vector, and 〈ū/‖ū‖, g〉 ∼ N (0, 1). Thus,

Pr(〈ū, g〉 ≥ t‖ū‖) = Pr(〈ū/‖ū‖, g〉 ≥ t) = 1/m′.

Similarly, Pr(〈v̄, g〉 ≥ t‖v̄‖) = 1/m′. Then, Pr(r ≤ min(‖ū‖2, ‖v̄‖2)) = min(‖ū‖2, ‖v̄‖2), since r is
uniformly distributed in [0, 1]. We get

Pr(ū, v̄ ∈ S) =
min(‖ū‖2, ‖v̄‖2)

m′2
=
αmin(‖ū‖2, ‖v̄‖2)

m
.

3. If IS(ū) 6= IS(v̄) then either ū ∈ S and v̄ /∈ S, or ū /∈ S and v̄ ∈ S. Thus,

Pr(IS(ū) 6= IS(v̄)) = Pr(ū ∈ S; v̄ /∈ S) + Pr(ū /∈ S; v̄ ∈ S).

We upper bound the both terms on the right hand side using the following lemma (switching ū and v̄ for the
second term) and obtain the desired inequality.

Lemma 5.1. If ‖ū‖2 ≥ ‖v̄‖2, then

Pr(ū ∈ S; v̄ /∈ S) ≤ αD‖ū− v̄‖ ·min(‖ū‖2, ‖v̄‖2) + α
∣∣‖ū‖ − ‖v̄‖∣∣;

otherwise,

Pr(ū ∈ S; v̄ /∈ S) ≤ αD‖ū− v̄‖ ·min(‖ū‖2, ‖v̄‖2).

Proof of Lemma 5.1. We have

Pr(ū ∈ S; v̄ /∈ S) = Pr(〈ū, g〉 ≥ t‖ū‖; r ≤ ‖ū‖2; v /∈ S).

The event {v̄ /∈ S} is the union of two events {〈v̄, g〉 ≥ t‖v̄‖ and r ≤ ‖v̄‖2} and {r ≥ ‖v̄‖2}. Hence,

Pr(ū ∈ S; v̄ /∈ S) ≤ Pr(〈ū, g〉 ≥ t‖ū‖; 〈v̄, g〉 < t‖v̄‖; r ≤ min(‖ū‖2, ‖ū‖2)) (2)

+ Pr(〈ū, g〉 ≥ t‖ū‖; ‖v̄‖2 ≤ r ≤ ‖ū‖2).

Let gu = 〈ū/‖ū‖, g〉 and gv = 〈v̄/‖v̄‖, g〉. Both gu and gv are standardN (0, 1) Gaussian random variables.
Thus, Pr(gu ≥ t) = Pr(gv ≥ t) = 1/m′ = α. We rewrite (2) as follows:

Pr(ū ∈ S; v̄ /∈ S) = Pr(gu ≥ t; gv < t) Pr(r ≤ min(‖ū‖2, ‖v̄‖2)) + Pr(gu ≥ t) Pr(‖v̄‖2 ≤ r ≤ ‖ū‖2)
= Pr(gu ≥ t; gv < t) ·min(‖ū‖2, ‖v̄‖2) + αPr(‖v̄‖2 ≤ r ≤ ‖ū‖2). (3)
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To finish the proof we need to estimate Pr(gu ≥ t; gv < t) and Pr(‖v̄‖2 ≤ r ≤ ‖ū‖2). Since r is uniformly
distributed in [0, 1], Pr(‖v̄‖2 ≤ r ≤ ‖ū‖2) = ‖ū‖2 − ‖v̄‖2, if ‖ū‖2 − ‖v̄‖2 > 0; and Pr(‖v̄‖2 ≤ r ≤
‖ū‖2) = 0, otherwise.

We use Lemma 6.2 to upper bound Pr(gu ≥ t; gv < t):

Pr(gu ≥ t; gv < t) ≤ O
(√

1− cov(gu, gv) ·
√

logm′/m′
)
. (4)

The covariance of gu and gv equals cov(gu, gv) = 〈ū/‖ū‖, v̄/‖v̄‖〉 and ‖ū− v̄‖2 = ‖ū‖2 + ‖v̄‖2 − 2〈ū, v̄〉.
Hence,

1− cov(gu, gv) = 1− ‖ū‖
2 + ‖v̄‖2 − ‖ū− v̄‖2

2‖ū‖ ‖v̄‖
=
‖ū− v̄‖2 − (‖ū‖2 + ‖v̄‖2 − 2‖ū‖ ‖v̄‖)

2‖ū‖ ‖v̄‖

=
‖ū− v̄‖2 − (‖ū‖ − ‖v̄‖)2

2‖ū‖ ‖v̄‖
≤ ‖ū− v̄‖

2

2‖ū‖ ‖v̄‖
.

We plug this bound in (4) and get

Pr(gu ≥ t; gv < t) ≤ α · ‖ū− v̄‖√
‖ū‖ ||v̄‖

·O(
√

logm′).

Now, Lemma 5.1 follows form (3). This concludes the proof of Lemma 5.1 and Theorem 3.1.

6 Gaussian Distribution

In this section, we prove several useful estimates on the Gaussian distribution. Let X ∼ N (0, 1) be one
dimensional Gaussian random variable. Denote the probability that X ≥ t by Φ̄(t):

Φ̄(t) = Pr(X ≥ t).

The first lemma gives a very accurate estimate on Φ̄(t) for large t.

Lemma 6.1. For every t > 0,

t√
2π (t2 + 1)

e−
t2

2 < Φ̄(t) <
1√
2π t

e−
t2

2 .

Proof. Write

Φ̄(t) =
1√
2π

∫ ∞
t

e−
x2

2 dx =
1√
2π

−e−x2

2

x

∣∣∣∣∣∣
∞

t

−
∫ ∞
t

e−
x2

2

x2
dx


=

1√
2πt

e−
t2

2 − 1√
2π

∫ ∞
t

e−
x2

2

x2
dx.

Thus,

Φ̄(t) <
1√
2πt

e−
t2

2 .

On the other hand,

1√
2π

∫ ∞
t

e−
x2

2

x2
dx <

1√
2πt2

∫ ∞
t

e−
x2

2 dx =
Φ̄(t)

t2
.
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Hence,

Φ̄(t) >
1√
2πt

e−
t2

2 − Φ̄(t)

t2
,

and, consequently,

Φ̄(t) >
t√

2π(t2 + 1)
e−

t2

2 .

Lemma 6.2. Let X and Y be Gaussian N (0, 1) random variables with covariance cov(X,Y ) = 1 − 2ε2.
Pick the threshold t > 1 such that Φ̄(t) = 1/m for m > 3. Then

Pr(X ≥ t and Y ≤ t) = O(ε
√

logm/m).

Proof. If εt ≥ 1 or ε ≥ 1/2, then we are done, since ε
√

logm = Ω(εt) = Ω(1) and

Pr(X ≥ t and Y ≤ t) ≤ Pr(X ≥ t) =
1

m
.

So we assume that εt ≤ 1 and ε < 1/2. Let

ξ =
X + Y

2
√

1− ε2
; η =

X − Y
2ε

.

Note that ξ and η areN (0, 1) Gaussian random variables with covariance 0. Hence, ξ and η are independent.
We have

Pr
(
X ≥ t and Y ≤ t

)
= Pr

(√
1− ε2 ξ + εη ≥ t and

√
1− ε2 ξ − εη ≤ t

)
.

Denote by E the following event:

E =
{√

1− ε2 ξ + εη ≥ t and
√

1− ε2 ξ − εη ≤ t
}
.

Then,
Pr
(
X ≥ t and Y ≤ t

)
= Pr(E and εη ≤ t) + Pr(E and εη ≥ t).

Observe that the second probability on the right hand side is very small. It is upper bounded by Pr(εη ≥ t),
which, in turn, is bounded as follows:

Pr(εη ≥ t) =
1√
2π

∫ ∞
t/ε

e−
x2

2 dx = Φ̄(t/ε) ≤ O
(ε e− t2

2ε2

t

)
≤ O

(ε e− t2

2

t

)
= O(ε/m).

We now estimate the first probability:

Pr(E and εη ≤ t) = Eη[Pr(E and η ≤ t/ε | η)]

=
1√
2π

∫ t/ε

0
Pr(E | η = x) e−x

2/2 dx

=
1√
2π

∫ t/ε

0
Pr(
√

1− ε2ξ ∈ [t− εx, t+ εx]) e−x
2/2 dx.

The density of the random variable
√

1− ε2 ξ in the interval (t− εx, t+ εx) for x ∈ [0, t/ε] is at most

1√
2π(1− ε2)

e
−(t−εx)2

2(1−ε2) ≤ 1

2
e

−(t−εx)2

2 ≤ 1

2
e

−t2

2 · eεtx ≤ 1

2
e

−t2

2 · ex,
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here we used that ε ≥ 1/2 and εt ≥ 1. Hence,

Pr(t− εx ≤
√

1− ε2 ξ ≤ t+ εx) ≤ εx e
−t2

2 · ex.

Therefore,

Pr(E and εη ≤ t) ≤ ε e
−t2

2

√
2π

∫ t/ε

0
xex · e

−x2

2 dx ≤ ε e
−t2

2

√
2π

∫ ∞
0

xex · e
−x2

2 dx︸ ︷︷ ︸
O(1)

.

The integral in the right hand side does not depend on any parameters, so it can be upper bounded by some
constant (e.g. one can show that it is upper bounded by 2

√
2π). We get

Pr(E and εη ≤ t) ≤ O(ε e
−t2

2 ) = O(ε · tΦ̄(t)) = O(ε
√

logm/m).

This finishes the proof.
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